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1 Conventions
I

� n denotes the Euclidean space of n-tuplets of real numbers. Vectors
x ∈ � n are always treated as column vectors, and their elements are
denoted by superscripts. Since no ambiguity can arise, we will write
x = (x1, x2, . . . , xn) to denote the column vector x, without a transpose
sign. The inner product in

� n is denoted by 〈·, ·〉 and defined by 〈x, y〉 ,
∑n

i=1 xi yi. The norm in
� n is denoted by ‖ · ‖ and is defined by ‖x‖ ,

〈x, x〉1/2.

II f(·) denotes a function where (·) stands for the undesignated variables.
f(x) denotes the value of f(·) at the point x. f : A → B indicates that
the domain of f(·) is in the space A and its range in the space B.
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2 Summary
The use of system simulation for analyzing complex engineering problems

is increasing. Usually, a lot of time is spent on specifying the problem for a
computer simulation. Once this has been done, the analyst usually does not
attempt to optimize the design. One reason for this is that there is usually no
time to go through the lengthy process of varying the input data, running the
simulation and comparing the various results. Another reason that systems
are not optimized is that they are often too complex, so that determining the
optimal parameters is just not feasible without using a sophisticated algorithm.

To overcome these difficulties, GenOpt, a generic optimization program,
has been developed. GenOpt does automatic optimization of a user-supplied
objective function using search techniques that require minimum effort and
time. Since one of the main application fields of the software is building sys-
tem simulation, it has to consider the special characteristics of the simulation
problems in this area, i.e.:

1. The number of free parameters is usually small (on the order of 10).

2. Much more computer time is spent evaluating the objective function than
determining the new parameter set.

3. Analytical properties of the objective function are usually unavailable.

In order to make the program widely applicable, the following requirements
need to be satisfied:

1. The program must be capable of minimizing a so-called black-box function
(a function for which no analytical properties are available).

2. It must be possible to couple the optimization program to any simulation
program that calculates the objective function on any operating system
without having to modify or recompile either program.

3. The user must be able to choose an appropriate optimization algorithm
from a library or easily implement a custom algorithm without having
to recompile and understand the whole optimization environment.

GenOpt fulfills these requirements. To ensure platform independence, GenOpt
is written entirely in Java. The coupling to a simulation program can be done
by simply specifying in a configuration file how to exchange data and how to
call the simulation. The implementation of the user’s own optimization algo-
rithms can be simply done by inheriting a superclass that offers methods to
use the functionality of GenOpt. Hence, it is not necessary to know the overall
program structure of GenOpt to implement and test a custom optimization
algorithm.

Several test cases have shown that it is easy to couple a new simulation
program, specify the optimization parameters and minimize the objective func-
tion. Therefore, in designing complex systems, as well as in system analysis for
research purposes, a generic optimization program like GenOpt offers valuable
services. However, you have to bear in mind that system optimization is not
a trivial matter: The efficiency and success of an optimization is strongly af-
fected by the properties and the formulation of the objective function, and by
the proper selection of an optimization algorithm.

Copyright (c) 2000.
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3 Introduction
Computer simulation is increasingly being used to analyze complex engi-

neering problems. Computer analysis is generally required to account for the
interactions and time-dependent effects of the system. Once the problem has
been formulated (which can take a long time), the question arises whether the
chosen values of the design parameters are such that the system is operating
“optimally”.

To optimize a system, the optimal values of a set of input parameters must
be found. However, these values are usually not obvious. For example, consider
the design of a low-energy office building where we want to reduce the energy
for cooling the building. Suppose we have a given energy flux (i.e., solar radi-
ation, internal heat from lighting, computers, etc.) that leads to an increase
in room temperature during the day such that cooling has to be provided.
Suppose we want to decrease the cooling energy by pre-cooling the building at
night by circulating chilled water in concrete ceilings. The water is cooled by a
cooling tower that uses low nighttime air temperature (“free-cooling” system).
However, how to operate this system is not obvious. You could run it for a
short time with a high water flow (when the outside air temperature is lowest
and so cooling the circulated water is most efficient), or you might run it over
a longer period with a lower water flow (to save pump energy) but also a lower
cooling tower efficiency due to the warmer mean outside air temperature. The
optimal operating point probably lies somewhere between those two extremes.

Alternatively, you might want to minimize the yearly cost of the cooling
system. Assume that the cost is known as a function of the installation cost
and the operation cost. Suppose you know the installation cost of the cooling
tower as a function of its size and the yearly energy cost as a function of the
energy consumption (which is evaluated in the simulation). Then you can use
GenOpt to design the system for lowest yearly operating cost.

Of course, optimization is not limited to problems in building energy sys-
tems. The general structure of a problem is always the same: You specify the
values of a set of parameters for a simulation and you get a result back. The
optimization itself does not care what those parameters stand for, nor does it
care what the result of the simulation represents. Therefore, it is possible to
apply optimization methods to a wide range of physical and engineering prob-
lems, including regression analysis. The remaining chapters in this report are
as follows: Chapter 4 briefly explains what GenOpt does. Chapter 5 describes
the general structure of an optimization problem and shows how optimization
problems are treated in GenOpt. Chapter 6 describes some important algo-
rithms for unconstrained non-linear optimization and Chapter 7 shows how
constraints can be taken into account. In Chapter 8 it is shown how new op-
timization algorithms can be implemented in GenOpt. Chapter 9 shows how
to install and run GenOpt. Finally, Chapter 10 describes how to configure
GenOpt to optimize a given objective function.

Copyright (c) 2000.
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4 What is GenOpt?
GenOpt is a generic optimization program for multidimensional minimiza-

tion of an objective function that is computed by an external program. GenOpt
automatically finds the values of selected free parameters (the independent vari-
ables) that minimize the objective function.

GenOpt can be coupled to any simulation program that reads its input
from one or more text files and writes its output (i.e., the value of the objec-
tive function) to a text file. GenOpt is written entirely in Java so that it is
completely platform independent. The platform independence and the general
interface make GenOpt applicable to a wide range of optimization problems.

To do the optimization, GenOpt offers a library with multi-dimensional
and one-dimensional optimization algorithms, as well as an algorithm for doing
parametric runs on an orthogonal, equidistant grid. GenOpt’s structure is open,
so that new optimization algorithms can easily be added without knowing the
details of the program structure. A base class serves as an interface between
the kernel of GenOpt (which is used for reading and writing the files, storing
the results, etc.) and the actual optimization algorithms. This class delivers
all methods required to access the data that specifies the optimization process,
reporting results to the result database, executing the simulation program, etc.

5 Optimization Problem
5.1 General Definition of an Optimization

Problem

An optimization problem consists of

1. A set of free parameters (the independent variables, also called design
parameters).

2. Some constraints that bound the domain of the free parameters and
dependent variables.

3. An objective function (the function to be minimized) that depends on
the free parameters.

Without loss of generality, optimization can be considered as minimizing
a function since maximization can always be translated into minimization by
simply changing the sign of the objective function. Therefore, we consider here
only the case of minimization. Hence, the general optimization problem can be
formulated as

min
x∈X

f(x) (5.1a)

X , {x ∈ � n |h(x) = 0, g(x) ≤ 0} (5.1b)

where f :
� n → �

, h :
� n → � m, and g :

� n → � p. Each component of h(·)
and g(·), respectively, represents one constraint.

� n denotes the n-dimensional

Copyright (c) 2000.
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space of real numbers. In case of unconstrained optimization, (5.1) reduces to

min
x∈ � n

f(x), (5.2)

with f :
� n → �

.

5.2 Problem Specification for GenOpt

Since for optimization in building simulation most of the constraints on
free parameters can be formulated as box constraints (i.e., where the lower
and upper bound of the free parameter is a constant), a default scheme for
such constraints is implemented in GenOpt. If more complex constraints have
to be specified, it is possible to include those constraints into the objective
function by adding penalty functions, barrier functions or slack variables (see
Section 7.2, page 42) and hence covering constraints of the problem type spec-
ified by (5.1).

Therefore, the problem specification for a GenOpt optimization is

min
x∈X

f(x) (5.3a)

X , {x ∈ � n | li ≤ xi ≤ ui; i ∈ {1, 2, . . . , n}; l, u ∈ � n} (5.3b)

where f :
� n → �

is evaluated by any external computer program.

5.3 Properties of Optimization Problems

Most optimization problems can be formulated as nonlinear constrained
problems. However, it is advisable – and in some cases even necessary – to
take advantage of some properties of the problem. It is obvious that (a) no
optimization algorithm works best on all possible functions f :

� n → �
and (b)

no optimization algorithm can guarantee to find the global minimum if local
minima exist.

The selection of the optimization algorithm depends primarily on the following
considerations:

• structure of the function (linear, non-linear, convex, continuous, number
of local minima, etc.)

• availability of analytic first and second derivatives

• size of the problem (number of independent parameters)

• problem constraints (on the independent parameters and/or the depen-
dent variables)

The need to select an algorithm that works efficiently on a particular problem
leads to a large number of available optimization methods. Therefore, it is
valuable to have a general framework that allows easy implementation of opti-
mization algorithms into an environment that launches a simulation and gets
back the required function value.

One has to bear in mind that this approach makes it impossible to get
analytical information about the objective function. However, most of the
applications in building simulation, which is a main target of GenOpt, cannot
be expressed analytically.

Copyright (c) 2000.
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Fig. 5.1: Example functions

5.4 Structure of the Objective Function

Fig. 1 to Fig. 6 show some possible structures of a 2-dimensional function
in order to demonstrate that it is impossible to have a “perfect” optimization
algorithm that works well on all problems. The different structures allow – or
in some cases even require – special techniques to find the minimum and to
increase the efficiency of the optimization:

Unimodal functions (Fig. 5.1(a)) For unimodal functions it holds that if
and only if x∗ ∈ �

is a minimum of a function f :
� n → �

, then along
each direction d ∈ � n, starting from x∗, the function value increases
strictly. Unimodal functions, therefore, have one and only one minimum.
Thus, if one reaches a minimum, it is for sure the global minimum. If
the function can be well approximated by a quadratic function, special
techniques can be applied that ensure a very efficient minimization, par-
ticularly if the first derivatives (gradient) and second derivatives (Hessian
matrix) of the function are known. In addition to the structure of the
function, the number of free parameters plays a crucial rule in selecting
an efficient optimization algorithm.

Functions with a significant null-space effect (Fig. 5.1(b)) For this class
of functions, perturbations of free parameters have no effect or only a
small effect on the function value if one is in a flat or almost flat area of
the function. No improvement or only little improvement is achieved and
hence the optimization might stop (due to the stopping criteria) without
reaching the minimum. One can avoid such problems by (I) eliminating
correlated parameters, (II) eliminating parameters on which the func-
tion show only small sensitivity, (III) reformulating the function, (IV)
selecting another algorithm, or (V) selecting another starting point for
the optimization. Point (IV) and (V) are a very insecure method if the
properties of the function and the optimization algorithm are not known.

Functions with a non-nice surface (Fig. 5.2(a)) In this case, gradient-
based search methods act very poorly. The local information that is
gathered in the neighborhood of the current point for evaluating the
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Fig. 5.3: Example functions

gradient indicates nothing about the shape of the function outside this
neighborhood. If even parasitic local minima exist, the objective func-
tion must be smoothed to avoid being trapped in local minima. These
local minima are often the result of some noise in the objective function,
possibly caused by numerical solvers.

Functions with a few local minima (Fig. 5.2(b)) In this case, one might
get trapped in one of the local minima. Selecting other starting points
for the iteration might help find the global minimum.

Functions without useful global information (Fig. 5.3(a)) If the func-
tion does not have a useful structure that helps finding the global mini-
mum, a very costly exhaustive search over the whole domain where the
minimum is expected to lie has to be done.

Functions with a large number of local minima (Fig. 5.3(b)) Selecting
different starting points with usual optimization algorithms is not suc-
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cessful for such cases. A search for the global minimum has to be made
with methods like Simulated Annealing, Tabu Search or Genetic Algo-
rithm.

In general, it can be said that if a point x∗ ∈ � n is a minimizer of a function
f :

� n → �
, and f(·) is quasi-convex, i.e., if for all x1, x2 ∈

� n and for all
λ ∈ [0, 1]

f(λ x1 + (1− λ) x2) ≤ max{f(x1), f(x2)}, (5.4)

then x∗ is a global minimizer.

If the objective function has several minima, then there is no guarantee
that one has reached the global minimum unless additional properties of the
function are known. Algorithms like Simulated Annealing or Genetic Algo-
rithms increases the chance of getting to the global minimum but they do not
guarantee finding the global minimum. Furthermore, the higher probability of
reaching the global (or at least a better local) minimum is paid for with higher
computation time. However, bear in mind that:

1. without automatic optimization it is time consuming and expensive (and
often impossible) to find even a local minimum, and

2. a local minimum is still a better solution to the problem than doing no
optimization at all.

In summary, the selection of an optimization algorithm depends on the
structure of the objective function and the number of free parameters. Unless
certain properties of the function are known one can never be sure to have
reached the global minimum. But even without the certainty of having found
the optimal solution, the solution has at least been improved.

Copyright (c) 2000.
The Regents of the University of California.
All rights reserved.

11



GenOpt
Generic Optimization Program
Version 1.1.2

Lawrence Berkeley National Laboratory
Building Technologies Department

Simulation Research Group

6 Optimization Algorithms

Multidimensional
Search Algorithms

Gradient
Based

Pattern
Search

Hooke−
Jeeves

Nelder−
Mead

Requires line search

Efficient for curve fitting

Note:

For calculating the order, it is assumed 
that the gradient is evaluated numerically 
with forward or backward differences

All given orders do not contain the 
iterations required for the line search

Conjugate
Direction

Newton

−  hessian
−  direction

+ O(N)
+ valleys

−  ~O(N22))

+ robust

−  dim < ~10

+ Conjugate
   search direction

−  O(N22))

−  inefficient

−  round
  off error

−  no secant condition
+ no matrices

−  O(N22))

DFP BFGS
  Fletcher−

Reeves

SDM
(modified)

Powell

+more robust
  than DFP

Fig. 6.1: Overview of some algorithms for non-linear unconstrained op-
timization

The fact that no analytical properties of the objective function, f :
� n → �

,
are available limits the techniques that can be applied efficiently to seek a min-
imum of f(·). The solution of the problem has to be obtained completely
numerically and, furthermore, it is difficult and time-consuming to obtain in-
formation about the properties of the objective function.

Fig. 6.1 gives an overview on some algorithms that solve non-linear, uncon-
strained problems of the form (5.2). The algorithms are divided into gradient

based methods and pattern search methods. A brief overview about the main
ideas and properties of the algorithms will be given below, where we assume
that f(·) is sufficiently smooth.

Readers who are already familiar with the algorithms might skip this sec-
tion. The algorithms that are in GenOpt’s library are described on page 19.

6.1 Gradient Based Methods

Gradient based methods use the gradient (at the current iteration point)
of the objective function, f :

� n → �
, with respect to the free parameters, that

is

∇f(x) =
(

∂f(x)
∂x1 , ∂f(x)

∂x2 , . . . , ∂f(x)
∂xn

)T

(6.1)
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to gather information about the function structure and to determine the direc-
tion of the next iteration step. Those methods can easily fail if the objective
function is not differentiable or if it even has discontinuities.

The Newton method (also called Newton-Raphson method) and the steep-
est descent method (SDM) are two gradient based methods. Both are not
used alone for optimization. However, they act as a base of a large class of
optimization algorithms. Therefore, it is important to understand their main
concepts.

6.1.1 Newton’s Method

The Newton method is based on the 1-st order necessary condition for
optimality, that is, if x∗ ∈ � n is a local minimum point, then

∇f(x∗) = 0. (6.2)

The linear approximation to the gradient at x∗ around a point x ∈ � n is

∇f(x∗) = ∇f(x) + H(x) d (6.3)

where H(x) ∈ � n×n is the Hessian matrix

H(x) , ∇2f(x), (6.4)

with

H i,j(x) ,
∂2f(x)

∂xi ∂xj
, (6.5)

and the vector d ∈ � n is defined as

d , x∗ − x. (6.6)

Hence, the new step that has to be taken is

d = −H(x)−1∇f(x). (6.7)

Since (6.2) also holds for a maximum point, the Newton method does not
know whether it is heading to a maximum or a minimum of f(·). Furthermore,
f(·) must be twice continuously differentiable and the Hessian nonsingular. It
should be mentioned that the numerical approximation of the Hessian is very
costly and error-prone, particularly if the scale of the problem is not known.

Since Newton’s method is a quadratic approximation of the objective func-
tion, it reaches the extremum of f(·) in one step if f(·) is a quadratic function.

Newton’s method converges very fast if one is close to the optimum since
the error of the quadratic function approximation is usually small close to the
optimum. However, convergence to a local minimum point cannot be proven
since the Newton method may lead to a maximum point.
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6.1.2 Steepest Descent Method

If one uses only the first term of the Taylor series

f(xi+1)− f(xi) = 〈∇f(xi), di〉+
1

2
〈di, H(xi) di〉+ . . . (6.8)

then the biggest reduction of f(·) : � n → �
is obtained by choosing a direc-

tion pi ∈
� n that is a positive scalar of di ∈

� n, so that the inner product
〈∇f(xi), pi〉 has the highest possible negative value. This leads to the steepest

descent method (SDM), where the direction piis calculated as

pi = −∇f(xi) (6.9)

and the step di as

di = αi pi, αi > 0. (6.10)

The new value of the objective function is then

f(xi+1) = f(xi + di). (6.11)

In the SDM algorithm, the step length is chosen so that αi minimizes f(xi +
αi pi) along the direction pi. Therefore, one has now only to solve the one-
dimensional problem

min
αi>0

f(xi + αi pi), (6.12)

and not the original n-dimensional problem.

For solving this one-dimensional problem, a class of algorithms exists. They
are generally referred to as line-search algorithm. If one has reached the mini-
mum of (6.12) by performing a line search, one has not yet reached the minimum
of f(x). The whole process is repeated iteratively until a stopping criterion is
satisfied.

It can be shown that the SDM algorithm generates orthogonal search di-
rections. At the beginning, f(·) is reduced relatively fast, but close to the
minimum the convergence rate gets very poor. The SDM algorithm has slow
convergence since it uses no history of the previous iterations and only a linear
approximation of the objective function.

6.1.3 Conjugate Direction Methods

A conjugate direction method is an approach that generates search direc-
tions that are conjugate to previous directions with respect to the Hessian
matrix of the objective function.

Definition 6.1.1 (Conjugate Direction) A set of vectors {pi}ni=1 is mutu-

ally conjugate with respect to a matrix Q ∈ � n×n, if and only if for all i 6= j

〈pi, Q pj〉 = 0. (6.13)
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It can be shown that conjugate direction methods that minimize f :
� n → �

along each direction pi, i ∈ {1, 2, . . . , n} reach the minimum of quadratic
functions of the form

f(x) = a + 〈b, x〉+ 1

2
〈x, Q x〉 (6.14)

where Q ∈ � n×n is a positive definite and symmetric matrix in maximal n
steps (for a proof see [Wal75]). The following property makes conjugate di-
rection methods widely used: Suppose that no additional evaluations of f(·)
are required to determine the Hessian of f(·), that is, Q is either known an-
alytically or can be determined with any method. Suppose further that the
gradient of f(·) is determined exactly by forward or backward difference with
n additional function evaluations. Then, not counting the function evaluations
for the line search, the algorithm reaches the global minimum of f(·) defined
by (6.14) with a maximum of n2 function evaluations if the line search (6.12)
is exact.

This property is very powerful since it gives fast convergence if one is al-
ready close to the minimum, that is, if (6.14) is a good approximation for the
function being optimized. Since the conjugate direction methods are highly
sensitive to numerical errors, it is recommended to restart the conjugate direc-
tion methods with an SDM step after n iterations [Kar89].

6.1.4 Davidon-Fletcher-Powell

The Davidon-Fletcher-Powell method (DFP) is a hybrid method that is
based on the Newton method and the SDM.

For constructing the DFP method, it is assumed that a matrix Di ∈
� n×n

satisfies the inverse secant condition, that is

Di

(

∇f(xi+1)−∇f(xi)
)

= xi+1 − xi, (6.15)

where Di is a positive definite and symmetric matrix that approximates the
Hessian. The search direction pi ∈

� n is obtained from (6.15) assuming that
∇f(xi+1) = 0. That leads to a new search direction

pi = −Di∇f(xi). (6.16)

Along the search direction pi, a line-search that minimizes

h(αi) , f(xi + αi pi) (6.17)

is carried out in order to obtain the new point xi+1.

Updating the matrix Di to Di+1 is done such that

1. No matrix inversion is necessary.

2. No additional function evaluations are required.

3. The generated matrix D remains symmetric and positive definite if one
starts with a symmetric positive definite matrix.

4. The generated search directions are mutually conjugate.
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In summary, the computationally costly operations of the DFP method are
the evaluation of the gradient and the line search for determining αi. How-
ever, the DFP method has a tendency to produce Di’s that are not positive
definite, primarily due to inaccuracy in the line search, but also due to round-
off errors [Sch94]. To overcome this problem, the DFP method is restarted
after (n + 1) steps with an SDM step. The tendency to generate Di’s that
are not positive definite leads to the replacement of the DFP method by the
Broyden-Fletcher-Goldfarb-Shanno method (BFGS), which does not have this
drawback. For a further discussion of the DFP method, see [PSU88].

6.1.5 Broyden-Fletcher-Goldfarb-Shanno

The Broyden-Fletcher-Goldfarb-Shanno method (BFGS) shares the same
properties as mentioned above for the DFP method, except that the secant

condition

Di (xi+1 − xi) = ∇f(xi+1)−∇f(xi) (6.18)

is fulfilled instead of the inverse secant condition. This leads to the requirement
that a linear system has to be solved in order to find the direction pi ∈

� n, i.e.,

Di pi = −∇f(xi). (6.19)

Since the matrix Di is positive definite due to its initial form and its update
scheme, (6.19) always has a unique solution.

The BFGS method does not share the DFP tendency of generating Di’s
that are not positive definite. In fact, Dennis and Schnabel state that it is
the “best” currently known update for the Hessian matrix [DS83]. For further
details of the BFGS method, see [PSU88].

6.1.6 Fletcher-Reeves

The Fletcher-Reeves algorithm is based on a recurrence formula that gen-
erates a sequence of conjugate directions without using matrix calculations. To
start the algorithm, an SDM step is made. In subsequent steps, each direction
is determined by

pi = −∇f(xi) +
〈∇f(xi), ∇f(xi)〉

〈∇f(xi−1), ∇f(xi−1)〉
pi−1 (6.20)

whereas a line search according to (6.12) is carried out to move from xi to xi+1.

Due to the conjugate direction, this method also terminates after at most
n steps for quadratic functions of the form (6.14) assuming theoretically that
the computations are carried out without any error.

Since no linearly-independent search directions are left over after n iter-
ations, the algorithm is restarted after each n iterations with an SDM step
discarding all previous experience that would be transmitted in the calculation
of p. However, provided that the restart is not done more frequently than every
n iterations, the property of quadratic convergence remains. It turns out that
after the n iterations, it is beneficial to do one more step before restarting with
an SDM step. The last iteration then compensates for the accumulation of the
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Fig. 6.2: Trajectory of Powell’s method

errors of the first n iterations [FR64].

In contrast to the DFP and BFGS methods, the Fletcher-Reeves algorithm
does not use the secant condition. The main advantage of the Fletcher-Reeves
algorithm over DFP and BFGS is that it does not use any matrix calculations,
which is of interest for large-scale problems. However, since the number of
independent parameters is usually small in building system optimization, a
matrix formulation is not a drawback. For further discussion and for a proof
that (6.20) generates conjugate directions, see [FR64] and [Wal75].

6.2 Pattern Search

For a description of the Simplex and the Hooke-Jeeves algorithm, see Chap-
ter 6.3. [LTT00] discusses different pattern search algorithms. For a proof of
convergence of pattern search algorithms, see [Tor97] and [LT99].

6.2.1 Modified Powell

The conjugate direction methods that are presented above all require knowl-
edge of the gradient of f :

� n → �
. However, in building simulation, the gradi-

ent does usually not exist since the simulation model is in most cases not even
continuous with respect to the design parameter, x.

Assuming that the gradient exists but is not available analytically, it has
to be approximated numerically. However, the numerical approximation is not
trivial. It cannot simply be done by a forward or backward approximation of
the partial derivatives – which costs n function evaluations in each iteration
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step – particularly if the scaling of the function is not known. Furthermore,
the conjugate direction methods presented above are sensitive to error in the
gradient approximation.

Powell has overcome these difficulties by formulating an algorithm that
does not use the gradient but still generates conjugate search directions. It
starts with a set of n orthogonal unit vectors, say {xi

1}ni=1 according to Fig.
6.2 (where n = 3). Along each of the n directions, a line search is carried out
that minimizes f(·).

After the last line search, a line search along the resulting direction q3
2 is done.

The direction that leads to the biggest improvement in minimizing f(·) (in our
case x2

1) is regarded as “exhausted” and – if particular conditions are fulfilled
– is replaced by the resulting search direction q3

2 . The whole process is now
restarted using the vectors x1

2, x2
2 and q3

2 as the base direction for the line
search.

After n main iterations – each consisting of (n + 1) sub iterations – a set of
mutually conjugate directions is obtained and one is at the global minimum
provided that f(·) is of the form of (6.14), the line search is done exactly, and
q replaces all base search directions xi, i ∈ {1, 2, . . . , n}. However, whether
the set of generated directions is conjugate depends highly on the quality of
the line search.

The original scheme that strictly exchanges the “exhausted” direction after
every set of sub iterations might lead to some directions being adopted more
often. Hence, the old set of directions is retained longer, which might cause slow
convergence for problems with many variables. This is a serious problem if the
number of free parameters is bigger than five. This requires a modification of
the direction exchange scheme. With the modified exchange scheme, one of the
mutually conjugate directions might be thrown away leading to more than n
main iterations in order to find the minimum of (6.14). However, this modifica-
tion turns to be essential for minimizing a function of twenty variables [Pow64].

Powell’s method has fast convergence if f(·) is a sum of squares of functions,
as is often the case in data fitting [Pow65]. If the number of free parameters is
bigger than 10 or 20, the modified Powell algorithm should not be used [Sch94].

Though the convergence properties of Powell’s method are good, it is gen-
erally accepted that quasi-Newton methods like BFGS (with approximation of
the gradient) have faster convergence than non-derivative methods [GMW81,
p. 131]. However, it has to be stressed that numerical differentiation is not an
easy task. It requires a sophisticated method in order to reduce errors that can
strongly affect the convergence properties of the quasi-Newton method.

For a further discussion of the algorithm, see [Pow64] and [Sch94].
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6.3 Implemented Algorithms

6.3.1 Hooke-Jeeves

Hooke and Jeeves [HJ61] developed a pattern search method that generates
steps along the valley of the objective function. The algorithm requires neither
the gradient of the objective function nor a line search. The original algorithm
solves the unconstrained problem (5.2). In GenOpt, the algorithm has been
modified to solve the box-constraint problem, (5.3), directly, i.e., without doing
a parameter transformation as the one of Section 7.1.1 on page 41.

The Hooke-Jeeves pattern search technique is based on the assumption that
it is worthwhile to make further steps in a direction that proved to be successful
in earlier steps. It starts with small orthogonal exploratory steps in each direc-
tion. After exploring each direction, it assumes that it is likely to get a further
improvement in the direction that results from previous successful explorations.
Thus, it skips the exploratory moves and makes a further step in this direction.
At the new point, exploratory moves in each direction are carried out again.
This ensures that the search stays in the valley of the objective function. If no
further improvement can be achieved, the algorithm restarts from the last suc-
cessful base with smaller exploratory steps. Otherwise, it takes another step in
the resulting direction, followed by exploratory steps. Hooke and Jeeves found
empirically that the number of function evaluations increases only linearly with
the number of independent variables, i.e., is O(n) [HJ61], where n denotes the
number of independent variables. This might be explained by the fact that a
valley is actually a one-dimensional object and, hence, the dimensionality of
the problem can be reduced if one searches along a valley. The method has
been successfully used for curve fitting [HJ61].

Further discussion of this method can be found in [Wil64, Avr76, Wal75].

Audet and Dennis [AD00] show that if the objective function f :
� n → �

is
continuously differentiable, and has bounded level sets, then the Hooke-Jeeves
algorithm converges to a point x∗ ∈ � n that satisfies ‖∇f(x∗)‖ = 0.

a) Algorithm Modifications

Smith [Smi69] reports that applying a universal step size for each variable
causes some parameters to be essentially ignored during much of the search
process. Therefore, he proposed to initialize the step size for each variable by

∆xi = δ|xi
0|, (6.21)

where δ > 0 is a fraction of the initial step length and xi
0 ∈

�
the starting

point of the i-th design parameter. In GenOpt’s implementation, (6.21) is not
used. The initialization of ∆xi is done by using the value of the parameter
Step specified in the command file (see page 65), which also allows taking the
scaling of the problem into account.

In the original implementation, the search of the exploration move is always
done first in the positive, then in the negative direction along the basis vec-
tors, ei ∈

� n, i = 1, . . . , n. Bell and Pike [BP66] proposed searching first
in the direction that led in the last exploration move to a reduction of the

Copyright (c) 2000.
The Regents of the University of California.
All rights reserved.

19



GenOpt
Generic Optimization Program
Version 1.1.2

Lawrence Berkeley National Laboratory
Building Technologies Department

Simulation Research Group

objective function. This increases the probability to reduce the objective func-
tion already by the first exploration move, thus allows skipping the second trial.

De Vogelaere [DV68] proposed changing the algorithm such that the maximum
number of function evaluations cannot be exceeded, which can be the case in
the original implementation.

All three modifications are implemented in GenOpt.

The Hooke-Jeeves algorithm solves the unconstrained problem minx∈ � n f(x).
Therefore, we convert the box-constrained problem

min
x∈X

f̃(x) (6.22a)

X ,
{

x ∈ � n | li ≤ xi ≤ ui; li, ui ∈ � ∪ {±∞};
i ∈ {1, 2, . . . , n}

}

(6.22b)

where f̃ :
� n → �

, to the form

min
x∈ � n

f(x) (6.23a)

where

f(x) ,

{

f̃(x), if x ∈ X

∞, otherwise.
(6.23b)

By using this transformation, we can ensure convergence to a stationary point
if the objective function is continuously differentiable and has bounded level
sets [AD00].

b) Algorithm Description

The algorithm can be divided into an initial exploration (I), a basic it-

eration (II), and a step size reduction (III). (I) and (II) make use of so-called
exploratory moves in order to get local information about the direction in which
the function decreases.

The exploratory moves are executed as follows (see Fig. 6.3):
Let ∆xi ∈ �

be the step size of the i-th design parameter, and ei ∈
� n the unit

vector along the xi axis. Assume we are given a base point, called the resulting
base point, xr, and its function value, say fp = f(xr). Then we perform a
sequence of orthogonal exploratory moves. To do so, we start with the first
direction (i.e., i = 0) and set the new point

xr ← xr + ∆xi ei. (6.24)

Provided that xr is feasible, that is li ≤ xi
r ≤ ui for all i ∈ {1, . . . , n},

we evaluate the objective function fr ← f(xr). If fr < fp, then the new point
becomes the resulting base point, and we assign

fp ← fr. (6.25)

Otherwise, we set

∆xi ← −∆xi, (6.26)

xr ← xr + 2 ∆xi ei, (6.27)
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and evaluate and assign again fr ← f(xr). If this exploration is successful, we
apply (6.25). If it fails, we reset the resulting base point by

xr ← xr −∆xi ei (6.28)

so that the resulting base point has not been altered by the exploration in
the direction along ei. Therefore, if any of the exploration moves have been
successful, we have a new resulting base point, xr, and a new function value
fp = f(xr). Using the (probably new) resulting base point, xr, the same pro-
cedure is repeated along the next dimension, ei+1, until an exploration along
all base vectors, ei, has been done. Note that, according to (6.27), ∆xi has in
the next exploration move along ei the sign that led in the last exploration to
a success (if any direction was successful).

At the end of the n exploratory moves, we have a new resulting base point,
xr, if and only if at least one of the exploratory moves led to a reduction of the
objective function.

(I) Initial Iteration
In the initial iteration, we have a current base point, xc. We assign xr ← xc

and make the exploration moves around xr . If at least one of the exploration
move leads to a reduction of the objective function, then we go to the basic
iteration (II), otherwise we reduce the step size according to (III).

(II) Basic Iteration
We update the function value of the base point by assigning

fc ← fp (6.29)
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and assign to the previous base point, xp, the value of the current base point,
xc, and to the current base point, xc, the value of the resulting base point, xr,
i.e.,

xp ← xc, (6.30)

xc ← xr . (6.31)

Then, we make a pattern move, given by

xr ← xr + (xr − xp) (6.32)

Now, we assign fp ← f(xr). Regardless of whether the pattern move leads to a
reduction of the objective function, we do exploratory moves around xr. If any
of the exploratory moves is successful, then xr and consequently fp = f(xr)
are altered. Now, we check whether fp ≥ fr. If so, the pattern move might
no longer be appropriate and we do an initial step (I). Otherwise, the pattern
move and the exploration steps lead to an improvement and we do a basic
iteration again (II).

(III) Step Size Reduction
The relative step size for the exploration moves is reduced according to

∆x← c ∆x (6.33)

where 0 < c < 1 is the constant step reduction factor. A common value for c is
0.5. xc is considered as the minimum point and the algorithm stops if the step
size has been reduced mmax times.

c) Keywords

To invoke the Hooke-Jeeves algorithm, the Algorithm section of the GenOpt
command file must have the following form:

Algorithm{

Main = HookeJeeves;

StepReduction = PositiveDouble;

NumberOfStepReduction = PositiveInteger;

}

The entries are defined as follows:

Main The name of the main algorithm.

StepReduction The step reduction factor, c in (6.33), where 0 < c < 1. A
common value is c = 0.5.

NumberOfStepReduction The number that specifies how many times a step
reduction has to be done before a point is considered as being a minimum
point. NumberOfStepReduction is equal to the parameter mmax in Fig.
6.4. (A common value is mmax = 2, but mmax depends on the step size
and the required accuracy of x).
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6.3.2 Simplex Method of Nelder and Mead with the
Extension of O’Neill

The Simplex method of Nelder and Mead is based on a direct comparison
of function values without using derivatives. It can be used to seek a solution
of (5.2), or, by using GenOpt’s scheme that takes box-constraints into account,
to seek a solution of (5.3).

The algorithm superimposes an n-dimensional simplex in the space that is
spanned by the free parameters (n > 1). At each of the (n + 1) vertices of the
simplex, the value of the objective function is evaluated. In each iteration step,
the point with the highest value of the objective function is replaced by another
point. The algorithm consists of three main operations: (a) point reflection,
(b) contraction of the simplex and (c) expansion of the simplex.

It is known that the Simplex method may fail to converge to a stationary
point, even if the objective function is smooth. See, for example, an excellent
discussion in [Wri96], or [McK98, LRWW98]. The method fails when the sim-
plex collapses into a subspace, or becomes extremely elongated and distorted
in shape. Despite its bad convergence properties, the Simplex method often
successfully locates a greatly improved solution with many fewer function eval-
uations than its competitors [Wri96].

In [McK98], McKinnon states a strictly convex function with three con-
tinuous derivatives and a set of initial iterates for which the Simplex method
converges to a nonstationary point. In this example, the vertices tend to a
straight line which is orthogonal to the steepest descent direction.

a) Main Operations

The notation defined below is used in describing the main operations. The
operations are illustrated in Fig. 6.5 where, for simplicity, a two-dimensional
simplex is considered.

Notation:

• I is the set of all vertex indices, i.e.,

I , {1, . . . , n + 1}. (6.34)

• h is a suffix that denotes the point with the highest function value:

h = arg max
i∈I

f(xi), (6.35)

that is

fh(x) = max
i∈I

f(xi). (6.36)

• l denotes the point with the lowest function value:

l = argmin
i∈I

f(xi). (6.37)

• For simplicity, we will often omit the argument of the function, i.e., we
define the notation

fi , fi(x). (6.38)
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Fig. 6.5: Simplex operations
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• xc is the centroid of the simplex, defined as

xc ,
1

n

n+1
∑

i=1
i6=h

xi (6.39)

Using this notation, the three main operations are:

Reflection The reflection of xh ∈
� n to a point denoted as x∗ ∈ � n is defined

as

x∗ , (1 + α) xc − α xh, (6.40)

where α ∈ �
is a positive constant, called the reflection coefficient.

Expansion of the simplex The expansion coefficient, γ ∈ �
, is defined as

γ ,
‖x∗∗ − xc‖
‖x∗ − xc‖

> 1. (6.41)

The expansion of x∗ ∈ � n to x∗∗ ∈ � n is given by

x∗∗ , γ x∗ + (1− γ) xc. (6.42)

Contraction of the simplex The contraction coefficient, β ∈ �
, is defined

as

0 < β ,
‖x∗∗ − xc‖
‖xh − xc‖

< 1. (6.43)

Hence, the new point, denoted by x∗∗ ∈ � n, is given by

x∗∗ , β xh + (1− β) xc. (6.44)

.

b) Basic Algorithm

In this section, the basic Nelder and Mead algorithm is described [NM65].
The extension of O’Neill and the modified restart criterion are discussed later.
The algorithm is as follows:

1. Initialization: Construct an initial simplex, spanned by (n + 1) points
and calculate the function values at each vertex. Each vertex is defined
as

xi+1 = x1 + c si ei, i ∈ {1, 2, . . . , n}, (6.45)

where si is the i-th component of the vector with the step size of the free
parameters, ei is the unity vector where the i-th component is one and
all other are zero, and c is a scalar equal to one for the first initialization
of the algorithm.

2. Reflection: The worst point, that is the point with the highest function
value, is reflected at the centroid, which leads to x∗.

3. Check if we got the best point: If f∗ < fl, try to expand the simplex in
the direction x∗−xc since further improvement in this direction is likely.
If the expansion according to (6.42) is successful, that is f ∗∗ < fl, then
x∗∗ is taken as the new vertex, otherwise x∗ is the new vertex and the
procedure is restarted from 2.
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now: C:\users\mwetter\Projects\GenOpt\1_Administration\1_Reports\3_Intermediate1\images\NelderMeadTrajectory.ppt
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Fig. 6.6: Sequence followed by the Simplex algorithm during optimiza-
tion

4. If it turned out under 3 that f∗ ≥ fl, then we did not get the best point.
So, we check if the new point x∗ is the worst of all points. If f∗ > fi for
all i 6= h, we contract the simplex (see 5); otherwise x∗ replaces xh as
the new vertex and the calculation is restarted from 2.

5. For the contraction, we first check if we should try a partial outside con-
traction or a partial inside contraction: If f ∗ ≥ fh, that is our new point
x∗ is as bad or even worse than xh, then we try a partial inside contrac-
tion. To do so, we leave our indices as is and apply (6.44). Otherwise, we
try a partial outside contraction. This can be simply done by replacing
xh by x∗ and applying (6.44). After both cases – the partial inside or
the partial outside contraction – we continue at 6.

6. We now check if our new point x∗∗ is the worst point of the new simplex,
that is f∗∗ ≥ fh.1 If so, we do a total contraction of the simplex by
replacing all xi by xi ← (xi + xl)/2. Otherwise, we replace xh by x∗∗.
In both cases we continue from 2.

Fig. 6.6 shows an example sequence of the optimization process. The
sequence starts with constructing an initial simplex x1, x2, x3. x1 has the

1Nelder and Mead [NM65] use the strict inequality f∗∗ > fh. However, if the user
writes the objective function value only with a few representative digits to a text
file, then the function looks like a step function if slow convergence is achieved. In
such cases, f∗∗ might sometimes be equal to fh. Experimentally, it has been shown
advantageous to perform, then, a total contraction rather than continuing with a
reflection. Therefore, the strict inequality has been changed to a weak inequality.
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highest function value and is therefore reflected, which leads to x4. x4 is the
best point in the set {x1, x2, x3, x4}. Thus, it is further expanded, which gives
x5. x2, x3 and x5 now span the new simplex. In this simplex, x3 is the vertex
with the highest function and hence goes over to x6 and further to x7. The
process of reflection and expansion is continued again two times, which leads
to the simplex spanned by x7, x9 and x11. x7 goes over to x12 which turns out
to be the worst point. Hence, we do a partial inside contraction, which gives
x13. x13 is better than x7 so we use the simplex spanned by x9, x11 and x13

for the next reflection. The last steps of the optimization are for clarity not
shown in Fig. 6.6.

c) Stopping Criteria

The first criterion is a test of the variance of the function values at the
vertices of the simplex:

varf =
1

n





n+1
∑

i=1

(

f(xi)
)2 − 1

n + 1

(

n+1
∑

i=1

f(xi)

)2


 < ε2. (6.46)

If varf is less than the square of a prescribed value ε, then the original im-
plementation of the algorithm would stop. Nelder and Mead have chosen this
stopping criterion based on statistical problems related to finding the minimum
of a sum-of-squares surface. In these problems the curvature near the minimum
gives information about the unknown parameters. A slight curvature indicates
a high sampling variance of the estimate and therefore there is no reason for
finding the minimum point with high accuracy. However, if the curvature is
marked, then the sampling variance is low and a higher accuracy in determining
the optimal parameter set is desirable.
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d) O’Neill’s Modification

O’Neill modified the termination criterion by adding a further condition [O’N71].
He checks whether any orthogonal step, each starting from the best vertex of
the current simplex, leads to a further improvement of the objective function.
He therefore sets c = 0.001 and tests if the optimality condition

f(xl) < f(x) (6.47a)

holds for all x defined by

x = xl + c si ei, i ∈ {1, 2, . . . , n}, (6.47b)

whereas xl denotes the best known point, and si and ei are defined as in (6.45).

e) Modification of Stopping Criteria

In GenOpt, (6.47) has been modified. It has been observed that users
sometimes write the objective function value only with few representative digits
to the output file. In such cases, (6.47a) won’t be satisfied if the write statement
in the simulation program truncates the value so that the difference f(xl)−f(x),
where f(·) denotes the value that is found in the output file, is zero. To
overcome this numerical problem (6.47b) has been modified to

x = xl + exp(j) c si ei, i ∈ {1, 2, . . . , n} (6.47c)

where for each direction i, the counter j is set to zero for the first trial and
increased by one as long as f(xl)− f(x) = 0. If (6.47a) fails for any direction,
then x according to (6.47c) is the new starting point and a new simplex with
side length (c si) is constructed. The best currently known point, that is the
point x that failed (6.47a), is used as initial point, xl, in (6.45).

Tests on several functions showed that during slow convergence the routine
was restarted too often.

Fig. 6.7(a) shows a sequence of points in such an optimization phase where
the routine was restarted too often. The points shown are a part of the iter-
ation sequence in an area close to the minimum of the test function shown in
Fig. 6.7(b). The algorithm reaches the neighborhood of the minimum with ap-
propriately large steps. The last of these steps can be seen at the right in Fig.
6.7(a). After this step, the stopping criterion (6.46) was satisfied which led to
a restart check, followed by a new construction of the simplex. From there on,
the convergence was very slow due to the small step size. After each step, the
stopping criterion was satisfied again which led to a new test of the optimality
condition (6.47a), followed by a reconstruction of the simplex. This check is
very costly in terms of function evaluations and, furthermore, the restart with
a new simplex does not allow increasing the step size, though we are heading
(locally) in the right direction.

O’Neill’s modification prevents both excessive checking of the optimality
condition as well as excessive reconstruction of the initial simplex. This is done
by checking for convergence only after a predetermined number of steps (i.e.,
after five iterations). However, the rate of convergence of the algorithm de-
pends crucially on this number. As an extreme case, a few test runs were done
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Fig. 6.7: Nelder Mead Trajectory

where convergence was checked after each step as in Fig. 6.7(a). It turned out
that in some cases no convergence was reached within a moderate number of
function evaluations if ε in (6.46) is chosen to large, i.e., ε = 10−3 (see Tab. 6.1).

To make the algorithm more robust, it is modified based on the following
arguments:

1. if the simplex is moving in the same direction in the last two steps, then
the search should not be interrupted by checking for optimality since we
are making steady progress in the moving direction.

2. if we do not have a partial inside or total contraction immediately beyond
us, then it is likely that the minimum lies in the direction currently being
explored. Hence, we do not want to interrupt the current search with a
possible restart.

These considerations have led to two criteria that both have to be satisfied
to permit the convergence check according to (6.46), which might be followed
by a check for optimality.

First, it is checked if we have done a partial inside contraction or a total con-
traction. If so, we check if the direction of the latest two steps in which the
simplex is moving has changed by an angle of at least (π/2). To do so, we
introduce the center of the simplex, defined by

xm ,
1

n + 1

n+1
∑

i=1

xi, (6.48)

and the normalized direction of the simplex between two steps,

dk ,
xm,k+1 − xm,k

‖xm,k+1 − xm,k‖2
. (6.49)
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Accuracy
ε = 10−3 ε = 10−5

Test func-
tion

Rosen-
brock

2D1 Quad
with I
ma-
trix

Quad
with

Q ma-
trix

Rosen-
brock

2D1 Quad
with I
ma-
trix

Quad
with

Q ma-
trix

Original
(with
reconstruc-
tion)

137 120 3061 1075 139 109 1066 1165

Original,
but no
reconstruc-
tion

136 110 1436 1356 139 109 1433 1253

Modified,
with recon-
struction

145 112 1296 1015 152 111 1060 1185

Modified,
no recon-
struction

155 120 1371 1347 152 109 1359 1312

Tab. 6.1: Comparison of the number of function evaluations for differ-
ent implementations of the simplex algorithm. See Appendix for the
definition of the function

Now, we can determine how much the simplex has changed its direction dk

between two steps by looking at the inner product of dk−1 and dk. The inner
product is equal to the cosine of the angle between the moving direction. If it
is not larger than zero, i.e.,

cosφk = 〈dk−1, dk〉 ≤ 0 (6.50)

then the moving direction of the simplex has changed by at least π/2 and so
we have changed our exploration direction. If this is the case, we might be at
the minimum and hence we test the variance of the vertices (6.46), possibly
followed by a test of the optimality condition (6.47a).

Besides the above modification, a further modification was tested: In some
cases a reconstruction of the simplex after a failed convergence check – (6.47a)
does not hold for all proven directions – seemed to slow down convergence.
Therefore, the algorithm was modified so that it continues at point 2 on page 26
without reconstructing the simplex after failing the convergence check. How-
ever, reconstructing the simplex led in most of the benchmark tests to faster
convergence. Therefore, this modification is no longer used in the algorithm.

f) Benchmark Tests

Tab. 6.1 shows the number of function evaluations and Fig. 6.8 shows
the relative number of function evaluations compared to the original imple-
mentation for several test cases. The different functions and the parameter
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Fig. 6.8: Comparison of benchmark tests

settings are given in the Appendix. The only parameter that was changed for
the different optimizations is the accuracy, ε. Furthermore, in some cases the
modification of the stopping criterion and/or the reconstruction of a new sim-
plex is implemented in the algorithm.

It turned out that modifying the stopping criterion is effective in most
cases, particularly if a new simplex is constructed after the check for optimality
failed. Therefore, the following version of the simplex algorithm was finally
implemented in GenOpt:

1. The base algorithm of Nelder and Mead, including the extension of
O’Neill, can be applied. That means, that after failing the optimality
check, the simplex is always reconstructed with the new step size.

2. The user can choose if the stopping criterion should be modified as ex-
plained in the previous chapter (which means inner contraction and mov-
ing direction of the simplex have to be satisfied).
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g) Keywords

To invoke the Simplex algorithm, the Algorithm section of the GenOpt
command file must have following form:

Algorithm{

Main = NelderMeadONeill;

Accuracy = PositiveDouble;

StepSizeFactor = PositiveDouble;

BlockRestartCheck = PositiveInteger;

ModifyStoppingCriterion = boolean;

}

The key words have following meaning:

Main The name of the main algorithm.

Accuracy The accuracy that has to be reached before the optimality condition
is checked. Accuracy is defined as equal to ε of (6.46), page 28.

StepSizeFactor A factor that multiplies the step size of each parameter for
(a) testing the optimality condition and (b) reconstructing the simplex.
StepSizeFactor corresponds to c in (6.45) and (6.47c).

BlockRestartCheck Number that indicates for how many main iterations the
restart criterion is not checked. If zero, restart might be checked after
each main iteration.

ModifyStoppingCriterion Flag indicating whether the stopping criterion should
be modified. If true, the optimality check (6.46) is done only if both of
the following conditions are satisfied: (a) in the last step, either a partial
or a total inner contraction was done, and (b) the moving direction of the
simplex has changed by an angle of at least (π/2), whereas the direction
is computed using (6.50).
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Fig. 6.9: Interval division

6.3.3 Interval Division Methods

The implementation of the interval division methods is explained first for
a master algorithm for one-dimensional minimization. The algorithm does not
require derivatives and it requires only one function evaluation per interval divi-
sion, except for the initialization. It can be used to minimize a one-dimensional
function, f :

� → �
, in a given unimodal interval.

The master algorithm is used to implement two commonly used interval
division methods: the golden section search and the Fibonacci division. First,
they will be explained in the general framework of the master algorithm since
they differ only by the ratio of the interval division.

Even though the described algorithms do a one-dimensional minimization,
they are explained for the case where f :

� n → �
, whereas all x ∈ � n must lie

on the line connecting the bounds of the unimodal interval. This is done since
the implementation of the algorithms is such that they can be used either for
minimization of f :

� → �
, or for doing a line-search that is used by multi-

dimensional algorithms.

a) General Interval Division

Let X be an interval such that

X = {x ∈ � n | x = x0 + s (x3 − x0) ; s ∈ [0, 1]} (6.51)

on which f :
� → �

is unimodal, i.e., there exists one unique point, x∗, such
that f(x)− f(x∗) > 0 for all x ∈ X \ x∗.2 Thus, x∗ is the unique minimizer of
f(·) in X. Then we can evaluate two points, x1 and x2, such that

x1 = x0 + s (x3 − x0), s ∈ (0, 1), (6.52)

2The notation x ∈ X \ x∗ means x is an element of the set X excluding the point
x∗
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and

x2 = x1 + s (x3 − x1), s ∈ (0, 1). (6.53)

Since f(·) is unimodal by assumption, at least one of the inequalities

f(x1) ≤ min{f(x0), f(x3)}, (6.54)

f(x2) ≤ min{f(x0), f(x3)}, (6.55)

must hold. (In fact, both inequalities should be strict due to unimodality, but
because of finite precision of computers, we allow weak inequalities.)

Suppose that (6.54) holds.
Case 1: Suppose that f(x1) ≤ f(x2). Then we know by unimodality that
x∗ ∈ [x0, x2]. Hence, we can discard the interval (x2, x3] and restrict our
search to [x0, x2].
Case 2: We must have f(x1) > f(x2). Again by unimodality, we have x∗ ∈
[x1, x3] and we can discard [x0, x1).

Similar conclusions hold if (6.55) is satisfied. In all cases we have succeeded
in reducing the initial interval to a new interval that contains the minimizer, x∗.

By constructing the new set {xk,i}3k=0, we want to nest the sequence of
intervals

[x0,(i+1), x3,(i+1)] ⊂ [x0,i, x3,i], i ∈ {0, 1, 2, . . .}, (6.56)

so that we have to evaluate f(·) in each step at one new point only. To do so,
we can assign the new bounds of the interval so that either [x0,(i+1), x3,(i+1)] =
[x0,i, x2,i], or [x0,(i+1), x3,(i+1)] = [x1,i, x3,i], depending on which interval has
to be discarded. By doing so, we have to evaluate only one new point in the
interval. It remains to decide where to locate the new point, in which the two
algorithms differ.

b) Golden Section Interval Division

Suppose we have three points in an interval so that

x1 = x0 + s (x3 − x0), s ∈ (0, 1), (6.57)

and

‖x0 − x1‖
‖x0 − x3‖

= q (6.58)

and, hence,

‖x1 − x3‖
‖x0 − x3‖

= 1− q. (6.59)

Suppose that our new point being located is a fraction, say w, beyond x1, that
is

‖x1 − x2‖
‖x0 − x3‖

= w. (6.60)
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Now, the new segment will either be of length q + w, or 1 − q, relative to the
current one. To reduce the worst possible case, we have to choose w such that
those two intervals are of the same length, namely

q + w = 1− q. (6.61)

Since the new point, x2, is, due to construction, symmetric to x1 in the interval
[x0, x3], we know that it must be positioned in the larger of the intervals [x0, x1]
and [x1, x3]. We still have to determine the fraction q. Since we apply the
process of interval division recursively, we now by scale similarity that

w

1− q
= q (6.62)

must hold. Combining (6.61) and (6.62) leads to

q2 − 3q + 1 = 0, (6.63)

with solutions

q1,2 =
3±
√

5

2
. (6.64)

Since q < 1 by (6.58), the solution of interest is

q =
3−
√

5

2
≈ 0.382. (6.65)

The fractional distances q ≈ 0.382 and 1 − q ≈ 0.618 correspond to the
so-called golden section, which gives this method its name.

Note that the interval is reduced in each step by the fraction 1− q, i.e., we
have linear convergence. In the m-th iteration, we have

‖x0, m − x2, m‖ = ‖x1, m − x3, m‖ = ‖x0, (m+1) − x3, (m+1)‖
= (1− q)m+1 ‖x0, 0 − x3, 0‖. (6.66)

Hence, the required number of iterations, m, to reduce the initial interval of
uncertainty ‖x0, 0 − x3, 0‖ to at least a fraction, say r, defined by

r ,
‖x0, m − x2, m‖
‖x0, 0 − x3, 0‖

=
‖x1, m − x3, m‖
‖x0, 0 − x3, 0‖

(6.67)

is given by

m ≥ ln r

ln(1− q)
− 1. (6.68)

c) Fibonacci Division

Another way to divide an interval such that we need one function evaluation
per iteration can be constructed as follows: Given an initial interval [x0, i, x3, i] ,
i = 0, we divide it into three segments symmetrically around its midpoint. Let
d1, i < d2, i < d3, i denote the distance of the segment endpoints, measured from
x0, i. Then we have by symmetry d3, i = d1, i +d2, i. By the bracket elimination
procedure explained above, we know that we are discarding a segment of length
d1, i. Therefore, our new interval is of length d3, (i+1) = d2, i. By symmetry we
also have d3, (i+1) = d1, (i+1) + d2, (i+1). Hence, if we construct our segment
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length such that d3, (i+1) = d1, (i+1) + d2, (i+1) = d2, i we can reuse one known
point. Such a construction can be done by using Fibonacci numbers, which are
defined recursively by

F0 , F1 , 1, (6.69)

Fi , Fi−1 + Fi−2, i ∈ {2, 3, . . .}. (6.70)

The first few numbers of the Fibonacci sequence are {1, 1, 2, 3, 5, 8, 13, 21, . . .}.
The length of the intervals d1, i and d2, i, respectively, are then given by

d1, i =
Fm−i

Fm−i+2
, d2, i =

Fm−i+1

Fm−i+2
, i ∈ {0, 1, . . . , m}, (6.71)

where m > 0 describes how many iterations will be done. Note that m must
be known prior to the first interval division. Hence, the algorithm must be
stopped after a predetermined number of iterations, m.

The reduction of the length of the uncertainty interval per iteration is given
by

d3, (i+1)

d3, i
=

d2, i

d1, i + d2, i
=

Fm−i+1

Fm−i+2

Fm−i

Fm−i+2
+ Fm−i+1

Fm−i+2

=
Fm−i+1

Fm−i+2
. (6.72)

Hence, after m iterations we have

d3, m

d3, 0
=

d3, m

d3, (m−1)

d3, (m−1)

d3, (m−2)
. . .

d3, 2

d3, 1

d3, 1

d3, 0

=
F2

F3

F3

F4
. . .

Fm

Fm+1

Fm+1

Fm+2
=

2

Fm+2
. (6.73)

The required number of iterations, m, to reduce the initial interval, d3, 0, to at
least a fraction, r, defined by (6.67), can again be obtained by expansion from

r =
d2, m

d3, 0
=

d3, (m+1)

d3, 0
=

d3, (m+1)

d3, m

d3, m

d3, (m−1)
. . .

d3, 2

d3, 1

d3, 1

d3, 0

=
F1

F2

F2

F3
. . .

Fm

Fm+1

Fm+1

Fm+2
=

1

Fm+2
. (6.74)

Hence, m is given by

m = arg min

{

m | r ≥ 1

Fm+2

}

. (6.75)

d) Comparison of Efficiency

The golden section is more efficient than the Fibonacci division. Comparing
the reduction of the interval of uncertainty, ‖x0, m−x3, m‖, in the limiting case
for m→∞, we obtain

lim
m→∞

‖x0, m − x3, m‖GS

‖x0, m − x3, m‖F
= lim

m→∞

Fm+2

2
(1− q)m = 0.95. (6.76)
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e) Master Algorithm for Interval Division

The following algorithm explains the steps of the interval division method.

Data: x0, x3;
Procedure that returns ri, defined as
ri = ‖x0, i − x2, i‖/‖x0, 0 − x3, 0‖

Step 1: Initialize
∆x = x3 − x0;
x2 = x0 + r1 ∆x;
x1 = x0 + r2 ∆x;
f1 = f(x1); f2 = f(x2);
i = 2;

Step 2: Iterate
i = i + 1;
if (f2 < f1)

x0 = x1; x1 = x2;
f1 = f2;
x2 = x3 − ri ∆x;
f2 = f(x2);

else
x3 = x2; x2 = x1;
f2 = f1;
x1 = x0 + ri ∆x;
f1 = f(x1);

Step 3: stop or go to Step 2;

f) Keywords

To invoke the golden section or the Fibonacci Division algorithm, the
Algorithm section of the GenOpt command file must have following form:

Algorithm{

Main = GoldenSection | Fibonacci;

[AbsDiffFunction = PositiveDouble; |

IntervalReduction = PositiveDouble; ]

}

The keywords have following meaning

Main The name of the main algorithm.

The following two keywords are optional. If none of them is specified, then
the algorithm stops after MaxIte function evaluations (i.e., after MaxIte−2
iterations), where MaxIte is specified in the section OptimizationSettings.
If both of them are specified, an error occurs.

AbsDiffFunction The absolute difference defined as

∆f , |min{f(x0), f(x3)} −min{f(x1), f(x2)}|. (6.77)

If ∆f is lower than AbsDiffFunction, the search stops successfully.
Note: Since the maximum number of interval reductions must be known
for the initialization of the Fibonacci algorithm, this keyword can be
used only for the golden section algorithm. It must not be specified for
the Fibonacci algorithm.
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IntervalReduction The required maximum fraction, r, of the end interval
length relative to the initial interval length (6.67).

6.3.4 Parametric Runs

The EquMesh algorithm allows making parametric runs on an orthogonal,
equidistant grid that is spanned in the space of the design parameters. To
do so, each parameter must have a lower and upper bound (i.e., the keywords
Min and Max of the Parameter section must be specified). The value of Step

(which must be an integer greater than or equal to zero) specifies into how
many intervals each axis will be divided. Thus, the setting

Vary{

Parameter{ Name = x0; Min = -1; Ini = 0; Max = 1; Step = 1; }

Parameter{ Name = x1; Min = -1; Ini = 0; Max = 1; Step = 2; }

}

would evaluate the objective function at all points x ∈ X, where the setX is
X , {[−1, −1],[1, −1], [−1, 0], [1, 0], [−1, 1], [1, 1]}.

If the value of Step is equal to zero, then this parameter is fixed at the
value specified by Min.

Note that the number of function evaluations increases exponentially with
the number of free parameters, e.g., a 5-dimensional grid with 2 intervals in each
dimension requires 35 = 243 function evaluations, whereas a 10-dimensional
grid would require 310 = 59049 function evaluations.

The EquMesh algorithm is invoked by the following specification in the
command file:

Algorithm{

Main = EquMesh;

}

Note that the whole section OptimizationSettings of the command file is
ignored.

6.3.5 Choice of Algorithm

As stated above, there is no general optimization algorithm that works effi-
ciently on all problems. The following section gives some guidelines on selecting
an algorithm to solve a particular problem. Since in GenOpt the objective func-
tion is evaluated as a black-box function, the following guide assumes that no
analytical information is known about the objective function. Also, the hints
are given for problems with only a small number of free parameters and not
for large-scale problems with hundreds or even thousands of free parameters.

The main questions to ask in selecting an efficient algorithm are:

1. Is the objective function continuously differentiable?

2. Is the objective function convex?

3. Is the number of free parameters high?
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4. Are we doing parameter fitting?

5. Can the objective function be well approximated by a quadratic?

If the objective function is continuously differentiable, then, for some opti-
mization algorithms, convergence to a stationary point can be proven. Lack of
differentiability makes it often impossible to state any convergence criteria.

If the objective function or if the feasible domain of the free parameters
is not convex, then the optimization algorithm may converge to a local mini-
mizer rather than a global minimizer. There are algorithms that increase the
probability of finding the global minimum but they do not guarantee finding
it. If the number of local minima is small it may be worthwhile using any of
the optimization algorithms described above and beginning the optimization
with different starting values or changing the algorithm to increase the chance
of finding the global minimum. However, bear in mind that finding a local
minimum is still a better solution than doing no optimization at all.

It is obvious that the gradient-based methods do a poor job if the gra-
dient does not provide representative information about the behavior of the
function. Hence, if the function looks like case Fig. 5.2(a) on page 10 gradient-
based methods should be avoided.

The Newton method should not be used by itself since it has no sense
whether it is heading towards a maximum or a minimum. Furthermore, it
requires the evaluation of the Hessian matrix, which is very costly. Also, the
steepest descent method is not a good choice since it is very inefficient because
of the orthogonal steps that it generates. However, both serve as good bases for
developing algorithms and so they are used as a framework for other algorithms.

The BFGS algorithm and the modified Powell algorithm might be appro-
priate if the objective function can be assumed to be quadratic. Because of
the conjugate search direction they work particularly well in this case. The
modified Powell algorithm is good for data fitting [Wal75, p. 139] but should
not be used if the number of free parameters exceeds 10 to 20.

If the objective function is continuously differentiable, it may be worthwhile
spending the effort to approximate the gradient for the BFGS method. The
BFGS method should be favored over the DFP method since it is less sensitive
to numerical errors. The Fletcher-Reeves algorithm is not very advantageous
for cases where the number of free parameters is small.

The Hooke-Jeeves method moves efficiently along the valley of the objective
function, thereby reducing the dimensionality of the problem. Since it does not
require explicit derivative information, it might be a good choice if the objective
function is expected to have some discontinuities. If the objective function is
continuously differentiable and has bounded level sets, then the Hooke-Jeeves
algorithm converges to a stationary point [AD00].

The simplex method of Nelder-Mead is widely used. The method is very
robust and not sensitive to numerical errors like the conjugate gradient methods
are. Good convergence is often achieved if the number of free parameters is
less than about 10.
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7 Constraints
In most optimizations it is necessary to impose constraints on the free pa-

rameters and/or the dependent variables. An example of a constraint on a
dependent variable is the case of minimizing heating energy by varying some
parameters, such as the mass flow of the heating system. Without constraints
minimum energy consumption would be achieved if the mass flow is zero, and
hence the heating system does not run at all. To overcome this problem, we
have to impose a constraint on a dependent variable. One possibility is to
simply add a “penalty” term to the energy consumption. This could be such
that every time the thermal comfort (one of our dependent variables) is not
satisfied, a positive number is added to the energy consumption. If this number
is chosen large enough, we can determine the optimal set of free parameters
that minimizes the energy consumption while still ensuring thermal comfort.

In most optimization problems special techniques are required to take con-
straints into account. For example the objective function can be modified or
the free parameters can be constrained. The following sections describe some
ways of applying constraints.

The method used in GenOpt is described in Section 7.1.1. Since the penalty
and barrier methods, which are described in Section 7.2, involve modifying the
objective function, they are problem specific and have to be applied by the
user.

7.1 Constraints on Free Parameters

7.1.1 Box Constraints

Box constraints are constant inequality constraints of the form

li ≤ xi ≤ ui, i ∈ {1, 2, . . . , n}, (7.1)

where l, x, u ∈ � n and li < ui for all i ∈ {1, 2, . . . , n}.

It is tempting to simply set the value xi back to either li or ui if the op-
timization algorithm puts xi outside the [li, ui] range. However, this can lead
to numerical difficulties.

A better approach is to transform the restricted parameters into another
space where no restrictions have to be imposed, that is

xi ↔ ti, xi ∈ [li, ui], ti ∈ (−∞, +∞). (7.2)

Of course, the new variable ti must still be bounded to prevent an overflow.
However, if the solution x∗ of the optimization problem is bounded, then the
transformed parameter set is also bounded.

Instead of optimizing the constrained parameter set, x ∈ � n, we now opti-
mize the new parameter set, t ∈ � n, which is unconstrained. The transforma-
tion ensures that all parameters stay feasible during the whole iteration process.
Furthermore, we will ensure that the i-th gradient component vanishes at li

and ui. Hence, the algorithm does not tend to cross those boundaries even if
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the minimum lies in an unfeasible area.

Various equations are possible to perform the transformation. The trans-
formations that are implemented in GenOpt are the following:

li ≤ xi : ti =
√

xi − li (7.3)

xi = li + (ti)2 (7.4)

li ≤ xi ≤ ui : ti = arcsin

(
√

xi − li

ui − li

)

(7.5)

xi = li + (ui − li) sin2 ti (7.6)

xi ≤ ui : ti =
√

ui − xi (7.7)

xi = ui − (ti)2 (7.8)

7.1.2 Coupled Linear Constraints

In some cases the constraints have to be formulated in terms of a linear
system of equations of the form

A x = b, (7.9)

where A ∈ � m × � n, x ∈ � n, b ∈ � m, and rank(A) = m.

There are various algorithms that take this kind of restriction into ac-
count. However, such restrictions are rare in building simulation and thus not
implemented in GenOpt. If there is nevertheless a need to impose such restric-
tions, they can be included by adding an appropriate optimization algorithm
and retrieving the coefficients by using the methods offered in GenOpt’s class
Optimizer.

7.2 Constraints on Dependent Variables

Often the constraints are non-linear of the form

g(x) ≤ 0 (7.10)

h(x) = 0 (7.11)

where g :
� n → � k and h :

� n → � l are non-linear functions, and x ∈ � n.

This kind of restriction is often taken into account by adding penalty or
barrier functions to the objective function. Let Tg(·) and Th(·) be the vectors
of transformation functions acting on the corresponding gi(x) and hi(x), i.e.,

Tg

(

g(x)
)

=
(

T 1
g

(

g1(x)
)

, T 2
g

(

g2(x)
)

, . . . , T k
g

(

gk(x)
)

)

, (7.12)

Th

(

h(x)
)

=
(

T 1
h

(

h1(x)
)

, T 2
h

(

h2(x)
)

, . . . , T l
h

(

hl(x)
)

)

, (7.13)

with T i
g :

� → �
and T i

h :
� → �

for all i.

Let wg ∈
� k and wh ∈

� l denote the sets of positive weighting constants
for g ∈ � k and h ∈ � l, respectively. Using this notation, we can modify the
objective function to the form

f̂(x, wg , wh) , f(x) +

∫

D

(

〈

wg , Tg

(

g(x)
)〉

+
〈

wh, Th

(

h(x)
)〉

)

dD. (7.14)
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Fig. 7.1: Barrier function

In (7.14), the integral indicates that violations of the constraints can be added
to the objective function value f(x) during any stage of the simulation. Clearly,
one can also construct the transformation functions Tg(·), Th(·) such that a vi-
olation of a constraint is weighted as a function of time, of any independent
variable, or of any dependent variable. If one wants for example minimize en-
ergy consumption, then it would be reasonable to impose punishment for not
satisfying thermal comfort only when the building is occupied, i.e., during day-
time on weekdays.

The advantage of this approach is that it allows free definition of coupled
nonlinear constraints that have to be satisfied. In contrast to the method de-
scribed in Section 7.1, (7.14) also allows constraining a dependent variable at
any time during the simulation. However, selecting appropriate transformation
functions Tg(·) and Th(·) and selecting wg and wh is not trivial. The rate of
convergence is strongly affected by this selection. In particular, problems might
occur if g(·) and its derivatives are not continuous at zero.

To implement the above dependent variable constraints, we usually use bar-
rier or penalty functions. Note, however, that even if the barrier and penalty
functions are described in terms of restricting the dependent variables, it is
clear that the same technique can also be applied to independent variables.

In the explanation below, if no ambiguity arises, we will often write w
instead of wg and wh to facilitate the notation.

7.2.1 Barrier Functions

Barrier functions impose a strong punishment if the dependent variable
gets close to the boundary of the feasible region. The closer the variable is
to the boundary, the higher the value of the barrier function becomes. The
general form of a barrier function is T i

g

(

gi(x)
)

≥ 0, with T i
g

(

gi(x)
)

→ ∞ as

gi(x) → 0 for all i.
A possible form of a barrier function is

T i
g

(

gi(x)
)

=
1

(

gi(x)
)2 r , r ≥ 1. (7.15)

One drawback of the barrier function is that the boundary of the feasible
set and its immediate neighborhood can, assuming a perfect numerical imple-
mentation, never be reached. Moreover, if the variation of the independent
variable between two iterations is too big, we can actually cross the boundary.
A robust implementation of a barrier function catches such numerical problems
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and sets the independent variable back to a feasible value. However, this pro-
duces oscillations in the objective function that badly affect the convergence
rate and can even cause divergence.

Another drawback of the barrier function is that it does not allow formu-
lating equality constraints.

Different approaches are possible for the weighting factors, wg :

a) Variation of the Weighting Factors

As already mentioned, one drawback of barrier functions is a punishment
is imposed when we get close to the boundary of the feasible domain even if we
are still in the feasible set. The smaller the weighting factors, the smaller is the
punishment added to the objective function for a given set of parameters. In
the extreme case we can get infinitesimally close to the boundary, as w tends to
zero. However, it is obvious that numerical difficulties will occur for very small
weighting factors. To overcome this problem, we can start with a moderately
large w0 and let wk tend to zero during the optimization process, i.e.,

wi
0 > . . . > wi

k > wi
k+1 > . . . > 0, (7.16)

where k denotes the iteration number and i the element of w.

However, we are left with choosing the proper value of w0 and the decre-
ments that reduce the sequence wk to zero as k → ∞. For instance, if wk

decreases too fast the problem might become ill conditioned, which causes nu-
merical difficulties. On the other hand, wk ’s that are too big cause too high
a punishment, so we cannot get close enough to the boundary of the feasible set.

A more effective technique is to extrapolate the parameter values and the
objective function value based on optimal values for some given constants, w,
as shown in the next section.

b) Extrapolation

Extrapolating the optimal free parameters and the corresponding value of
the objective function, based on some points for given, fixed wk’s, is a simple
approach for approximating the optimal parameter set x and f(x) for wk → 0.
Using this technique instead of successive reduction of the weighting factors
reduces calculation time.

The idea is to optimize the objective function for a given number (for
example, 3) of weighting factors. Once the optimization is done, a function,
say pi(w), i ∈ {1, . . . , n} is put through the known points of each parameter
xi. The optimal parameter set is then obtained by evaluating p(w = 0). To get
the objective function value for x∗ = p(0), the same technique can be used for
the objective function value, or the simulation can be run again with x = x∗

and barrier functions removed.
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Fig. 7.2: Penalty function for inequality constraint

7.2.2 Penalty Functions

In contrast to barrier functions, penalty functions allow crossing the bound-
ary of the feasible set. As soon as the boundary is crossed, a positive penalty
term is added to the objective function. Penalty functions allow equality con-
straints to be imposed (which is not possible with barrier functions). Fig. 7.2
shows an example of a penalty function with different weighting factors wk,
where k stands for the iteration number.

The general form of a penalty function is given for each component T i
g

(

gi(x)
)

of Tg

(

g(x)
)

and T i
h

(

hi(x)
)

of Th

(

h(x)
)

by

T i
g

(

gi(x)
)

{

> 0, if g(x) > 0,

= 0, otherwise,
(7.17)

T i
h

(

hi(x)
)

{

> 0, if h(x) 6= 0,

= 0, otherwise,
(7.18)

where each element T i
g(·) and T i

h(·) is continuous and monotonically increasing
as one gets further inside the unfeasible set.

Possible penalty functions for inequality constraints are

T i
g

(

gi(x)
)

=

{

exp
(

gi(x)
)

− 1, if g(x) > 0,

0, otherwise,
(7.19)

or

T i
g

(

gi(x)
)

=

{

(

gi(x)
)2 r

, r ≥ 1, if g(x) > 0,

0, otherwise,
(7.20)

and, for equality constraints,

T i
h

(

hi(x)
)

= exp
(

(

hi(x)
)2
)

− 1, (7.21)

or

T i
h

(

hi(x)
)

=
(

hi(x)
)2

, r ≥ 1. (7.22)

The disadvantage of this approach is that the derivative of T i
g(·) is not con-

tinuous at the boundary of the feasible set. Depending on the optimization
algorithm, this can produce oscillations during the optimization process, or
even leading to non-convergence.
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As in the barrier method, selecting the weighting factors wg and wh is not
trivial. Too small a value for w produces too big a trade-off. Hence, the bound-
ary of the feasible set can be exceeded by an unacceptable amount. On the
other hand, too large a value of w leads to ill conditioning of the optimization
problem and so can cause numerical problems.

Unlike the case with barrier functions, the weighting factors must not tend
to zero, otherwise the penalty term will vanish. The weighting factors have to
satisfy the inequality

0 < w0 < . . . < wk < wk+1. (7.23)

7.2.3 Slack Variables

The method of slack variables ensures that the transition of an inequality
constraint and its derivatives is smooth at the boundary of the feasible set.
This is accomplished by introducing, for each inequality constraint, gi(x) with
i ∈ {1, . . . , k}, a new free parameter, si with i ∈ {1, . . . , k}. The general
form of the transformation function is then

T i
g

(

gi(x)
)

=
(

gi(x) + (si)2
)2 r

, r ≥ 1, (7.24)

where the optimization is now done with respect to the new set of free param-
eters, x̂ , (x, s) ∈ � n+k.

The slack variables si can have any value. They are treated in the opti-
mization as any other independent variable xi. If an inequality constraint is
not violated, that is gi(x) ≤ 0, then si will be set to −(gi(x))0.5, and hence
T i

g

(

gi(x)
)

vanishes. On the other hand, if the i-th inequality constraint is vio-

lated, then si will tend to zero and T i
g

(

gi(x)
)

, multiplied by wi
g , increases the

value of the objective function.

If we also have to deal with equality constraints, they can simply be intro-
duced in the form of penalty functions.

As with penalty functions, the solution of the modified objective function
converges to the solution of the original constrained problem, f(x), as w tends
to infinity.

Since each additional slack variable causes the optimization to be done in
a higher dimensional space, the number of slack variables should be kept as
small as possible.

7.2.4 Implementation of Barrier Functions, Penalty
Functions, and Slack Variables

Since, according to (7.16) and (7.23), the weighting factor, w, depends on
the number of the optimization run, we need to know the iteration number in
order to increase or decrease w. However, the weighting factors cannot simply
be changed in every simulation run. Since for special purposes, like approxi-
mating the gradient or performing a line search, the same objective function
has to be evaluated several times, we have to fix w during certain simulation
runs.
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One way to do this is to divide the simulation calls into main and sub

iterations. However, this may be confusing for some algorithms since it is not
always clear how to distinguish between a simple trial of a parameter set and
an effective move towards the minimum.

To overcome these difficulties a method is implemented into the class Optimizer
that increments a counter in each call. If the keyword WriteStepNumber in
the optimization command file is set to true, the method calls the simula-
tion to evaluate the objective function for the new value of this counter. If
WriteStepNumber is false, no new function evaluation is performed by this
method since the objective function does not depend on this counter.

To vary the weighting factors, one can simply read this counter in the
simulation program and assign new values to the weighting factors.

7.3 Summary

We have described different methods for taking constraints into account.
In the simplest case of box constraints, a simple transformation of the con-
strained parameters is performed. The optimization is then carried out in this
new, unconstrained space.

Coupled linear constraints are rare in building simulation. They are most
efficiently handled by specially constructed optimization algorithm.

To take non-linear (coupled) constraints on independent and dependent
variables into account, one can use barrier or penalty functions, or for inequal-
ity constraints, also introduce slack variables. Penalty methods approximate
a constrained problem by an unconstrained problem by assigning a high cost
to the objective function if one gets out of the feasible set. In contrast to the
penalty methods, the barrier methods do not allow leaving the feasible set.
These methods assign a high cost to the objective function if one gets close to
the boundary. Barrier methods cannot be used for equality constraints since
with barrier methods, the restricted variables have to be feasible all the times.

One problem with the penalty function for inequality constraints is that its
derivative is not continuous at the boundary of the feasible set. To overcome
this problem one can reformulate the inequality transformation by introducing
slack variables. However, the smooth transition is offset by the higher number
of free parameters that have to be optimized.

The solution of the modified unconstrained problem with barrier functions,
penalty functions and slack variables converges to the solution of the original
constrained problem as the weighting factors w tend to zero (for barrier func-
tions) or to infinity (for penalty functions and slack variables). However, as w
tends to zero (for barrier functions) or infinity (for penalty functions and slack
variables), the objective function becomes ill conditioned for all three methods.

Copyright (c) 2000.
The Regents of the University of California.
All rights reserved.

47



GenOpt
Generic Optimization Program
Version 1.1.2

Lawrence Berkeley National Laboratory
Building Technologies Department

Simulation Research Group

GenOpt

configuration

Input Files
initialization:: Specification of file location

(input files, output files, log file, etc.)
command:: Specification of parameter names, initial values,

bounds, optimization algorithm, etc.
configuration:: Configuration of simulation program

(error indicators, start command, etc.)
simulation input template: Templates of simulation input files

simulation
input template

commandinitialization

log

output

log

output

input
Simulation
Program

Si
m

ul
at

io
n 

 O
pt

im
iz

at
io

n

retrieval of
simulation output

program
call

Fig. 8.1: Interface between GenOpt and the simulation program that
calculates the objective function

8 Program
GenOpt 1.1.2 is written entirely in Java 2 v1.4.0 to ensure platform inde-

pendence. GenOpt is divided into two main parts. One part does all the data
handling, storing the results and communicating with the simulation program.
The other part is the actual optimization portion. It contains the optimization
algorithms, auxiliary classes that are used for performing the optimization cal-
culations like testing the optimality condition, performing a line search, etc.

Since there is a variety of simulation programs and optimization algorithms,
GenOpt is kept entirely open on both sides. This allows easy implementation
of new optimization algorithms as well as using any software to perform the
simulation.

8.1 Interface to the Simulation Program

Text files are used to exchange data with the simulation program and to
specify how the simulation program is to be started. This makes it possible to
couple any simulation program to GenOpt without requiring code adaptation
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on either the GenOpt side or the simulation program side.

The simulation program must satisfy the following requirements:

1. It must be capable of reading input from one or more text files, writ-
ing the value of the objective function to a text file, and writing error
messages to a text file.

2. It must be able to be launched automatically by a command and must
terminate automatically. This means that the user does not have to open
the input file manually and shut down the simulation program once the
simulation is finished.

The simulation program may be a commercially available program or one
written by the user.

8.1.1 Post-Processing of the Objective Function Value

In some optimization problems, the objective function value may depend
on different simulation results. For instance, you may want to minimize the
(weighted) sum of annual heating and cooling energy consumption, which we
will call total energy. Some simulation programs, such as SPARK, TRNSYS,
etc. allow computing the total energy directly. Other simulation programs,
such as EnergyPlus, cannot add different output variables. In this case, you
can only write the heating and cooling energy consumption separately to the
output file. In order to be able to optimize the total energy, the simulation
output must be post-processed.

If you want to post-process the objective function value in GenOpt, you
could proceed as follows:
Suppose the objective function delimiter (see Section 10.1.1) for the heating and
cooling energy are, respectively, Eheat= and Ecool=. Then, you can specify in
the optimization initialization file (see Section 10.1.1) the section

ObjectiveFunctionLocation{
Delimiter1 = "Eheat="; Name1 = "E_tot";

Delimiter2 = "Eheat="; Name2 = "E_heat";

Delimiter3 = "Ecool="; Name3 = "E_cool";

}

The file Optimizer.javahas a method postProcessObjectiveFunction(int,

double[]) that is called after the objective function value has been read from
the simulation output files. The arguments of this method are the iteration
number and an array that contains the objective function values. In our exam-
ple, the array has three elements. The 0th and 1st element contains the value
of the heating energy, and the 2nd element the value of the cooling energy. To
minimize the total energy, you can overwrite this method as follows:

private void postProcessObjectiveFunction(int iterationNumber,

double[] f){
f[0] = f[1] + f[2];

if (iterationNumber == 1)

setInfo("Post process objective function value.");

return;

}
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Fig. 8.2: Implementation of optimization algorithms into GenOpt

Hence, the 0th element of the array f contains after the method call the total
energy. Since GenOpt’s minimization algorithms minimize only the 0th element
of f (the other elements are only being used for report), we now optimize the
total energy. GenOpt will also write an information to the log file and the user
interface to remind that the objective function value is being post processed.

After making the above changes, the file genopt/algorithm/Optimizer.

java needs to be compiled. To compile this file, you need to have a Java
compiler (such as the one from Sun Microsystems). To compile it, open a
console (or DOS window), change to the directory genopt/algorithm and
type

javac Optimizer.java

This will generate the file Optimizer.class. If the compilation fails, you most
likely did not specify the CLASSPATH variable as described in Chapter 9.

8.2 Interface to the Optimization Algorithm

The large variety of optimization algorithms leads to an open interface on
the algorithm side. To do the optimization, one can couple any Java class de-
signed according to the guidelines of Section 8.4. Thus, users can implement
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their own algorithms and add them to the library of available optimization
algorithms without having to adapt and recompile GenOpt. This means that
GenOpt can not only be used to do optimization with built-in algorithms, but
it can also be used as a framework for developing, testing and comparing opti-
mization algorithms.

The class Optimizer is the superclass of each optimization algorithm. It
offers all the functions required for easy retrieval of parameters that specify
the optimization settings, performing the evaluation of the objective function
and reporting intermediate results. For a listing of its methods, see http://

simulationresearch.lbl.gov or the Javadoc code documentation that comes
with GenOpt’s installation.

8.3 Package genopt.algorithm

The Java package genopt.algorithm consists of all the classes that are
directly used to define the optimization algorithm. It is structured as follows:

genopt.algorithm This package contains all optimization algorithms. The
superclass Optimizer, which must be inherited by each optimization
algorithm, is part of this package.

genopt.algorithm.optimality This package contains classes that can be used
to check whether a parameter set is at a minimum point or not.

genopt.algorithm.gradient This package contains classes that can be used
for approximating the gradient of the objective function. None of these
classes have been implemented yet.

genopt.algorithm.linesearch This package contains classes for doing a line
search along a given direction.

genopt.algorithm.util.math This package contains classes for mathemati-
cal operations.

The Javadoc source code documentation comes with GenOpt’s installation. It
can also be seen on http://simulationresearch.lbl.gov.

8.4 Implementing a New Optimization Algorithm

The Java class that represents the optimization algorithm must have the
form shown in Fig. 8.3 and must use the methods of its superclass Optimizer to
evaluate the objective function and report the optimization steps. The methods
of the Optimizer class are listed in http://simulationresearch.lbl.gov.

To implement and use your own algorithm, follow these steps:

1. Place the bite-code (ClassName.class) in the directory genopt/algorithm
(on Linux or Unix) or genopt\algorithm (on Windows).

2. Set the value of the keyword Main in the Algorithm section of the op-
timization command file to the name of the optimization class (without
file extension).
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package genopt.algorithm;

import genopt.GenOpt;
import genopt.lang.OptimizerException;
import genopt.io.InputFormatException;

public class ClassName extends Optimizer{

public ClassName (GenOpt genOptData)
throws OptimizerException, IOException,
InputFormatException

{

// set the mode to specify whether the

// default transformations for the box
// constraints should be used or not
int constraintMode = xxxx;

super(genOptData, constraintMode);

// remaining code of the constructor
}

public int run() throws OptimizerExcep-
tion, IOException

{
// the code of the optimization algorithm

}

// add any further methods and data members

// you need in your algorithm

}

Fig. 8.3: Code snippet that specifies how to implement an optimization
algorithm

3. Add any further keywords you require to the Algorithm section. The
keywords must be located after the entry Main of the optimization com-
mand file. The keywords must be in the same sequence as they are called
in the optimization code.

4. Do not forget to call the method Optimizer.report() after evaluating
the objective function. Otherwise, the result will not be reported.

5. In order to allow the implementation of a variation of the weighting fac-
tors used for penalty or barrier functions and slack variables, the method
Optimizer.increaseStepNumber() must be called from the optimiza-
tion code. You must call this method every time a whole iteration step is
completed but not during an optimization stage in which the definition
of the objective function must stay exactly the same (such as during a
line search or a gradient approximation).
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Fig. 8.4: Examples of a null space with and without minima

8.5 Handling of Null Space of the Objective
Function

Let the f :
� n → �

be a twice continuously differentiable objective func-
tion. A null space of f(·) is an open subset, S ⊂ � n, of the parameter space
given by

S , {x | ∇f(x) = 0 ∧ detH(x) = 0} (8.1)

where H denotes the Hessian matrix (6.4), as defined on page 13. The set S
might be the set of (local) minima points of the function. Two examples of the
set S are given in Fig. 8.4 for the one-dimensional case f :

� → �
.

In the null space S, no information about the descent direction of the func-
tion can be obtained. If the algorithm gets in the set S, then no guarantee can
be given that the minimum of the function can be reached. This leads to either
no convergence or in the best case to a slower rate of convergence.

Null spaces often occur if the objective function is written with only a few
significant digits to the output file. Truncating significant digits causes prob-
lems particularly towards the end of the optimization when the change of the
objective function is small. For example, suppose that an objective function
value of f(x) = 1/3 is written as 0.33. Assume that the change of the ob-
jective function in the current stage of the optimization affects only the third
digit beyond the decimal point. Then no useful information about the function
can be obtained at this stage.

To detect such cases, the optimization algorithm can force GenOpt to check
if objective function values are equal. To do the check, all checked values are
stored internally. The check is then performed among those values only. That
means, that only if the algorithm asks for a check after a function evaluation,
this particular function value will be part of the set for which later checks will
be performed. The separation between values that are checked and are not is
done because some function values might be obtained repeatedly, i.e., in stages
where the scaling of the problem has to be detected.

If the same function value is obtained more than a specified number of
times, then GenOpt terminates with an error message. The maximum number
of equal function values can be specified by the setting of MaxEqualResults

in the command file (see page 65). For informational purposes, all objective
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function values that have been checked previously are reported to the user
interface and to the log file.
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9 Installing and Running GenOpt
9.1 Installing GenOpt

To use GenOpt, a Java interpreter for Java 2 v1.4.0 or higher must be in-
stalled, such as Sun’s Java Runtime Environment (JRE). If you want to add
your own optimization algorithm you must also have a Java compiler. Sun’s
Java Development Kit (JDK) contains a compiler and the runtime environ-
ment. GenOpt has been tested with Sun’s Java 2 v1.4.0 .

You can download JRE and JDK from http://java.sun.com/products/.
JRE is freeware. JRE and JDK also run on the Windows operating system.

Once you have installed Java on your system, you need to download the
file go_prg.linux (self extracting file, for Linux only) or go_prg.zip from
http://SimulationResearch.lbl.gov onto your system and extract it. To
extract the file go_prg.linux on Linux, type

chmod +x go_prg.linux

./go_prg.linux

To extract go_prg.zip on Unix, type

unzip go_prg.zip go_prg

On Windows, you can use the software WinZip to extract the file go_prg.zip.

9.2 System Configuration for JDK Installation

In the instructions below, “.” stands for the current directory and the
directory go_prg contains the directory genopt (i.e., go_prg/genopt) where
the Java class files of GenOpt are stored.

9.2.1 Linux/Unix

The installation is explained for the bash-shell and the C-shell. In both
cases, it is assumed that /usr/local/jdk/bin is the directory that contains
the Java binaries. If you use the bash-shell you have to add the following lines
to the ~/.bashrc file:

PATH="$PATH:/usr/local/jdk/bin"

CLASSPATH="$CLASSPATH:.:$HOME/go_prg"

export PATH CLASSPATH

If you use the C-shell, you have to add the following lines to the ~/.cshrc file:

set PATH=PATH:/usr/local/jdk/bin

setenv CLASSPATH CLASSPATH:.:$HOME/go_prg

9.2.2 Microsoft Windows

The PATH variable of the system must contain the directory where the Java
Virtual Machine is located. For example,
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SET PATH=%PATH%;C:\prog\jdk\bin

There must also be a CLASSPATH variable that points to the Java classes.
This variable has the form

SET CLASSPATH=%CLASSPATH%;.;C:\prog\go_prg

In Windows 2000 both variables can be specified under “Start → Settings →
Control Panel → System → Advanced Environment Variables”. In Windows
95 and 98 they can be specified in the autoexec.bat file.

9.3 Starting an Optimization with JDK
Installation

GenOpt can be run either with a graphical user interface (GUI), or as a
console application. The GUI features an online chart showing the optimization
progress of the objective function and of certain parameters. Any values can
be added or removed from the chart during runtime. The console application
allows running GenOpt with a batch job for several sequential optimizations or
starting GenOpt over a remote connection, e.g., using telnet. You can start
the GUI version of GenOpt with the command

java genopt.WinGenOpt

and the console version with

java genopt.GenOpt [Optimization Initialization File]

In these commands, java is the name of the Java virtual machine (that inter-
prets the byte code), and genopt.WinGenOpt (or genopt.GenOpt) is the full
name of the main class. The brackets indicate that the last parameter is op-
tional. The optimization initialization file can also be specified after launching
GenOpt.
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9.4 System Configuration for JRE Installation

First, make sure that the path variable points to the path where the jre

binary (i.e., jre.exe) is located. If this is not the case, you have to set the
path variable as described in Section 9.2.

It is recommended that you set an environment variable, similar to the
CLASSPATH variable, to the genopt directory. This can be done in the same
way as described for the CLASSPATH variable for the JDK installation. Note that
on Windows platforms, JRE will ignore the CLASSPATH environment variable.
For both Windows and Solaris platforms, the -cp option is recommended to
specify an application’s class path.

9.5 Starting an Optimization with JRE
Installation

The GUI version can be launched with the command

jre -cp %CLASSPATH% genopt.WinGenOpt

and the console version with

jre -cp %CLASSPATH% genopt.GenOpt [OptInitializationFile]

where CLASSPATH is the name of the environment variable that points to the
genopt directory.
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10 Setting Up an Optimization
Problem

The first step in specifying an optimization problem is to define the ob-
jective function to be minimized within an external program that satisfies the
requirements listed on page 49. If you have to maximize your objective func-
tion, you can change the sign of the objective function to turn the maximization
problem into a minimization problem.

During the optimization the simulation that calculates the objective func-
tion has to be executed several times, and in many cases, hundreds or even
thousands of times. Therefore, it is worthwhile to simplify your problem as
much as possible. In particular, if you want to minimize annual energy con-
sumption, you might calculate representative days to get a first guess of the
optimum point if the annual simulation takes too long. You can then use the
guess as a starting point for an optimization over the whole year.

Besides defining the objective function, you have to specify the range al-
lowed for each of the free parameters. If the ranges are restricted, then you
can use the default scheme for box constraints or modify your problem with
penalty terms, barrier terms or slack variables as described in Chapter 7.

Once you have set up your objective function, you have to write its value
into the simulation output file. It is important that the objective function value

is written to the output file without truncating significant digits (see page 53).
For example, if you calculate the objective function in Fortran double precision,
it is recommended that you use E24.16 format.

To indicate which value in simulation output file is the value of the objec-
tive function, you can specify it with a leading string (see page 62).

Once you have finished specifying your simulation, you have to specify the
files described in the following section.

10.1 File Specification

This section defines the file syntax for GenOpt. Please see also the files in
the directory example of the GenOpt installation.

The syntax of the GenOpt files is structured into sections of parameters
that belong to the same object. The sections have the form

ObjectKeyWord { Object }

where Object can either be another ObjectKeyWord (nesting of objects) or an
assignment of the form

Parameter = Value ;

Some variables allow being referenced. References have to be written in an
object-like manner, i.e., in the form
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Parameter = ObjectKeyWord1.ObjectKeyWord2.Value ;

where ObjectKeyWord1 refers to the root of the object hierarchy as specified
in the corresponding file.

To clarify the different possible values for keywords, the following notation
is introduced:

1. Text that is part of the file is shown in fixed width fonts.

2. | stands for possible entries. Only one of the entries that are separated
by | is allowed.

3. [ ] indicates optional values.

4. The file syntax follows the Java convention. This means,

(a) // indicates a comment on a single line,

(b) /* and */ enclose a comment,

(c) the equal sign, =, assigns values,

(d) a statement has to be terminated by a semi-colon, ;,

(e) curly braces, { }, enclose a whole section of statements, and

(f) the syntax is case sensitive.

The following basic types are used:

String any sequence of characters.
If the sequence contains a blank character,
it has to be enclosed in apostrophes (").
If there are apostrophes within quoted text,
they must be specified by a leading backslash (i.e., \").
Similarly, backslash within quoted text must be specified by a
leading backslash (e.g., c:\prog\genopt).

StringReference Any name of a variable that appears in the same section.
Integer Any integer value.
Double Any double value (including integer)
Boolean Either true or false

10.1.1 Initialization File

The initialization file specifies where the files of the current optimization
problems are located, which simulation files must be saved, and what addi-
tional strings have to be passed to the simulation call. It also specifies which
simulation program is used by having a variable that points to the simulation
configuration file, which in turn specifies the command that launches the sim-
ulation program.

The sections must be specified in the order shown in the following example.
The order of the keywords in each section is arbitrary.

The initialization file syntax looks like:
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Simulation {

Files {

Template {

File1 = String | StringReference;

Path1 = String | StringReference;

[File2 = String | StringReference;

Path2 = String | StringReference;

[ ... ] ]

}

Input { // the number of input file must be equal to

// the number of template files

File1 = String | StringReference;

Path1 = String | StringReference;

[SavePath1 = String | StringReference;]

[File2 = String | StringReference;

Path2 = String | StringReference;

[SavePath2 = String | StringReference;]

[ ... ] ]

}

Log {

File1 = String | StringReference;

Path1 = String | StringReference;

[SavePath1 = String | StringReference;]

[File2 = String | StringReference;

Path2 = String | StringReference;

[SavePath2 = String | StringReference;]

[ ... ] ]

}

Output {

File1 = String | StringReference;

Path1 = String | StringReference;

[SavePath1 = String | StringReference;]

[File2 = String | StringReference;

Path2 = String | StringReference;

[SavePath2 = String | StringReference;]

[ ... ] ]

}

Configuration {

File1 = String | StringReference;

Path1 = String | StringReference;

}

} // end of section Simulation.Files

[CallParameter {

[Prefix = String | StringReference;]

[Suffix = String | StringReference;]

}]

[ObjectiveFunctionLocation {

Delimiter1 = String | StringReference;

Name1 = String;

[Delimiter2 = String | StringReference;

Name2 = String;

[ ... ] ]
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}]

} // end of section Simulation

Optimization {

Files {

Command {

File1 = String | StringReference;

Path1 = String | StringReference;

}

}

} // end of section Optimization

The sections have the following meaning:

Simulation.Files.Template The set of free parameters that is optimized by
the optimization program will be written in the simulation input files.
To do so, GenOpt reads the simulation input template files, replaces each
occurrence of %variableName% by the numerical value of the correspond-
ing variable, and the resulting file contents are written as the simulation
input files. The string %variableName% refers to the name of the vari-
able as specified by the entry Name in the optimization command file on
page 65.

If the free parameters have to be written to several simulation input files,
this can be specified by adding as many Filei and Pathi assignments as
necessary – where i stands for a one-based counter of the file and path
– to the Template section. Note that there must obviously be the same
number of files and paths in the Input section that follows this section.

In case of multiple simulation input template files, each file will be written
to the simulation input file whose keyword ends with the same number.

The following rules are imposed:

1. Each variable name specified in the optimization command file must

occur in at least one simulation input template file.

2. Multiple occurrences of the same variable name are allowed in the
same file or also in different files.

3. If the value WriteStepNumber in the section OptimizationSettings

of the optimization command file is set to true, then the string
%stepNumber%must occur in at least one simulation input template
file. Rule 1 and 2 apply also to %stepNumber%. If WriteStepNumber
is set to false, then %stepNumber% can occur, but it will not be
replaced.

Simulation.Files.Input The simulation input file is automatically gener-
ated by GenOpt based on the current parameter set and the correspond-
ing simulation input template file, as explained in the previous para-
graph. Obviously, the number of simulation input files must be equal to
the number of simulation input template files.

The section Input has an optional key word, called SavePath. If SavePath
is specified, then the corresponding input file will after each simulation
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be copied into the directory specified by SavePath. The copied file will
have the same name, but with the simulation number added as prefix.

Simulation.Files.Log The simulation log file is scanned for error messages.
The optimization terminates if any of the strings specified by the variable
ErrorMessage in the SimulationError section of the GenOpt configu-
ration file is found. At least one log file must be specified.

The section Log also has the optional key word SavePath. It has the
same functionality as in the previous section.

Simulation.Files.Output The value of the objective function is read from
this file. The value that is written after the last occurrence of the string
specified by Delimiter1 in the section ObjectiveFunctionLocation is
regarded as the value of the objective function. The number of objective
function values is arbitrary (at least one must be specified). The cur-
rently implemented optimization algorithms minimize the first objective
function value. The other values are only reported to the output files
and the online chart.

GenOpt searches for the objective function value as follows:

1. After the first simulation, GenOpt searches for the first objec-
tive function value in the first output file. The number that oc-
curs after the last occurrence of the string specified by the vari-
able Delimiter1 in the section ObjectiveFunctionLocation is
regarded as the value of the objective function. Only if the first
output file does not contain the first objective function value will
GenOpt proceed with reading the second output file (if present) and
so on until the last output file is read. If GenOpt cannot find the
objective function value in any of the output files, it will terminate
with an error. The same procedure is repeated with the second ob-
jective function value (if present) until all objective function values
have been found.

2. In the following iterations, GenOpt will only read the file(s) where
it found the objective function value(s) after the first simulation.
The other output files are not read.

This section also contains the optional keyword SavePath. If this key-
word is specified, then GenOpt copies the output file, regardless of whether
it contains the objective function value or not. This is particularly useful
for doing parametric runs, e.g., with the algorithm EquMesh, page 39.

Simulation.Files.Configuration The entries in this section specify the sim-
ulation configuration file, which contains information that is related to
the simulation program only, but not related to the optimization prob-
lem. The simulation configuration file is explained below.

Simulation.CallParameter Here, a prefix and suffix for the command that
starts the simulation program can be added. With these entries, any
additional information, such as the name of weather files, can be passed
to the simulation program. To do so, one has to refer to either of these
entries in the argument of the keyword Command, page 64.
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Simulation.ObjectiveFunctionLocation This section specifies where the val-
ues of the objective function can be found in the simulation output file.
GenOpt reads the value after the last occurrence of Delimiteri (where
i stands for 1, 2, 3, ...) as the objective function value. The value of
Namei has no other functionality than labeling the results.

For convenience, the section ObjectiveFunctionLocation can option-
ally be specified in the initialization file, but its specification is required
in the configuration file. If this section is specified in both files, then the
specification in the initialization file will be used.

Specifying the section ObjectiveFunctionLocation in the initialization
file is of interest if a simulation program is used for different problems
that require different values of this section. Then, the same (program
specific) configuration file can be used for all runs and the different set-
tings can be specified in the (project dependent) initialization file rather
than in the configuration file.

Optimization.Files.Command This section specifies where the optimization
command file is located. This file contains all mathematical information
of the optimization. It is described further on page 65.

10.1.2 Configuration File

The configuration file contains information related only to the simulation
program used and not to the optimization problem. Hence, it has to be written
only once for each simulation program and operating system. It is advisable
to put this file in the directory go_prg/genopt/cfg so that it can be used for
different optimization projects. Some configuration files are provided with the
GenOpt installation.
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The syntax is specified by

// Error messages of the simulation program

SimulationError{

ErrorMessage = String;

[ErrorMessage = String;

[ ... ] ]

}

// Number format for writing simulation input files and result files

IO{

NumberFormat = Float | Double;

}

// Specifying what command launches the simulation

SimulationStart{

Command = String;

WriteInputFileExtension = Boolean;

}

// Specifying the location of the

// objective function value in the simulation output file

ObjectiveFunctionLocation{

Delimiter1 = String | StringReference;

Name1 = String;

[Delimiter2 = String | StringReference;

Name2 = String;

[...]]

}

The entries have following meaning:

SimulationError The error messages that might be written by the simulation
program must be assigned to the keyword ErrorMessage so that GenOpt
can check whether the simulation has completed successfully. At least
one entry for ErrorMessage must be given.

IO The keyword NumberFormat specifies in what format the design parame-
ters will be written to the simulation input file. The setting Double is
recommended, unless the simulation program cannot read this number
format.

SimulationStart The keyword Command specifies what string must be used
to start the simulation program and wait for its termination. The value
of the variable Command is treated in a special way: Any value of the
optimization initialization file can be automatically copied into the value
of Command. To do so, you have to surround the reference to the corre-
sponding keyword with percent signs. A reference to the keyword Prefix

of the initialization file would, for example, look like

%Simulation.CallParameter.Prefix%

By setting WriteInputFileExtension to false, the value of the key-
word Simulation.Input.Filei (where i stands for 1, 2, 3) is copied
into Command, and the file extension is removed.
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ObjectiveFunctionLocation Note that this section can also be specified in
the initialization file, where its values override the settings of the config-
uration file. This section has been described on page 63.

10.1.3 Command File

The command file specifies optimization-related settings such as the free
parameters, stopping criteria and optimization algorithm. The sequence of the
entries in all sections of the command file is arbitrary.

The structure is:

// Settings of the free parameters

Vary{

// Parameter entry

Parameter{

Name = String;

[ Min = Double | SMALL; ]

Ini = Double;

[ Max = Double | BIG; ]

Step = Double;

}

...

}

// General settings for the optimization process

OptimizationSettings{

MaxIte = Integer;

WriteStepNumber = Boolean;

[ MaxEqualResults = Integer; ]

}

// Specification of the optimization algorithm

Algorithm{

Main = String;

... // any other entries that are required

// by the chosen optimization algorithm

}

The different sections are:

Vary This section contains the set of free parameters.

Parameter Here the properties of the parameter are listed. Name specifies the
name of the variable. The simulation input template files will be scanned
for this string – surrounded by percent signs – and each occurrence will
be replaced with its numerical value before writing the simulation input
files. The keywords Min and Max determine the lower and upper bound,
respectively, for each parameter. If the keywords are omitted or set to
SMALL and BIG, the parameter is regarded as unconstrained. Ini specifies
the initial value and Step the step size. Even if not all optimization
algorithms use a step size, it should be set to an appropriate value. An
algorithm may use this value as an indicator about the scaling of the
variable, i.e., for making an initial estimate of the length over which a
line search should be performed.
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OptimizationSettings This section specifies general settings of the optimiza-
tion. MaxIte is the maximum number of iterations. If more than MaxIte

main iterations are performed, GenOpt terminates with an error mes-
sage. WriteStepNumber indicates whether the current step of the opti-
mization has to be written in the simulation input file. The step number
can then be used to calculate a barrier or penalty function in the sim-
ulation program (see Section 7.2 on page 42). The optional parameter
MaxEqualResults specifies how many times the objective function can
equal a value that has already been previously obtained before GenOpt
terminates. This setting is used to terminate GenOpt when the ob-
jective function has a null space (see page 53). The default value of
MaxEqualResults is 5.

Algorithm The setting of Main specifies which algorithm is invoked for per-
forming the optimization. Its value has to be equal to the class name
that contains the algorithm. Note that additional parameters might be
required depending on the algorithm used (see Section 6.3 on page 19 for
the implemented algorithms).

10.1.4 Log File

The GenOpt log file contains general information about the optimization
process. It also contains warnings and errors that occur during the optimiza-
tion.

GenOpt writes the log file to the directory that contains the initialization
file. The name of the log file is GenOpt.log.

10.1.5 Output File

GenOpt writes two output files (in addition to GenOpt.log). Both of the
files OutputListingMain.txt and OutputListingAll.txt list the optimiza-
tion steps; the first contains only the main iteration steps and the second all it-
eration steps. The files are written to the directory where the optimization com-
mand file is located (specified by the variable Optimization.Files.Command.Path1
in the optimization initialization file).

Both output files are generated automatically by GenOpt. Each time the
method genopt.algorithm.Optimizer.report() is called from the optimiza-
tion algorithm, the current trial is reported in either one of the files.
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11 Further Development
The following enhancements to GenOpt are planned:

1. Extending the library of optimization algorithms so that, depending on
the problem structure, additional algorithms can be selected.

2. Development of an efficient optimization methodology for thermal build-
ing simulation. The methodology will be based on the concept of consis-
tent approximations [Pol97].

12 Conclusion
In system optimization, it is not possible to apply a general optimization

algorithm that works efficiently on all problems. The efficiency of the optimiza-
tion is strongly affected by what algorithm is used. The best algorithm to use
depends on the properties of the objective function – such as the number of free
parameters, the continuity of the objective function and its derivatives, and on
the existence of local minima. Thus a variety of optimization algorithms is
needed.

For optimizing the black-box functions that GenOpt is aimed at, a gener-
alization of the structure of the optimization process can be made. First of
all, the fact that analytical properties of the objective function are unavailable
makes it possible to separate optimization and function evaluation. Therefore,
a general interface is possible that allows coupling any stand-alone program
that communicates via text files. With this approach, users are not restricted
to using a special program for evaluating the objective function. Rather, they
can use the simulation program they are already using for their system design
and development. Hence, the system can be optimized with little additional
effort.

This open environment not only allows you to couple your simulation pro-
gram and implement special purpose algorithms, but it also allows sharing
algorithms among users. This makes it possible to extend the algorithm li-
brary and thus improve GenOpt’s usefulness.

To date, the optimization environment has been developed, different opti-
mization algorithms have been implemented and various test cases have been
run. A key finding is that a lot of function evaluations are being made in the
neighborhood of the minimum. This indicates that substantial computation
time can be saved with improvements in this stage of the optimization pro-
cess. Some techniques that speed up the optimization in this region should
be studied. One possibility is to use hybrid methods, which switch from one
optimization scheme to another if the first reaches the slow improvement stage.
Another approach to reach the minimum faster could be to use a multidimen-
sional quadratic function approximation – based on points already evaluated
– in the neighborhood of the minimum. Switching to the other optimization
scheme could be done automatically or by user intervention based on graphical
display of the rate of convergence.
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Fig. A.1: Rosenbrock function

A Benchmark Tests
This section lists the settings used in the benchmark tests.

The settings in OptimizationsSettings and Algorithm were the same for
all runs expect for Accuracy, which is listed in the result chart on page 31.

The common settings were:

OptimizationSettings{
MaxIte = 1500;

WriteStepNumber = false;

}

Algorithm{
Main = NelderMeadONeill;

Accuracy = see page 31;
StepSizeFactor = 0.001;

BlockRestartCheck = 5;

ModifyStoppingCriterion = see page 31;
}
The benchmark functions that were used and the Parameter settings in the
Vary section are shown below.

A.1 Rosenbrock

The Rosenbrock function which is shown in Fig A.1 is defined as

f(x) , 100
(

x2 − (x1)2
)2

+ (1− x1)2 (A.1)

where x ∈ � 2. It attains a minimum at x∗ = (1, 1), with f(x∗) = 0.
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∂x1 = 0 and ∂df(x)

∂x2 = 0, where f(x) is as in
(A.2)

The section Vary of the optimization command file was set to

Vary{

Parameter{

Name = x1; Min = SMALL;

Ini = -1.2; Max = BIG;

Step = 1;

}

Parameter{

Name = x2; Min = SMALL;

Ini = 1; Max = BIG;

Step = 1;

}

}

A.2 Function 2D1

This function, which is composed of three other functions, has only one
minimum point and therefore no other local minima. It has two regions where
the gradient is very small (see Fig. A.2).

The function is defined by

f(x) ,

3
∑

i=1

f i(x), (A.2)

with

f1(x) , 〈b, x〉+ 1

2
〈x, Q x〉, b ,

(

1
2

)

, Q ,

(

10 6
6 8

)

, (A.3)

f2(x) , 100 arctan
(

(2− x1)2 + (2− x2)2
)

, (A.4)

f3(x) , 50 arctan
(

(0.5 + x1)2 + (0.5 + x2)2
)

, (A.5)

where x ∈ � 2. The function has a minimum at x∗ = (1.855340, 1.868832) with
f(x∗) = −12.681271.
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The section Vary of the optimization command file is

Vary{

Parameter{

Name = x0; Min = SMALL;

Ini = -3; Max = BIG;

Step = 0.1;

}

Parameter{

Name = x1; Min = SMALL;

Ini = -3; Max = BIG;

Step = 0.1;

}

}

A.3 Function Quad

The function “Quad” is a 10-dimensional quadratic function of the form

f(x) , 〈b, x〉 + 1

2
〈x, M x〉, (A.6)

with b, x ∈ � 10 and M ∈ � 10×10. The vector b is defined as

b , (10, 10, . . . , 10). (A.7)

This function is used in the benchmark test with two different matrices, M .
Both matrices are positive definite.

In one test case, M is the identity matrix, I , and in the other test case M
is a matrix – called Q (defined below) – with a large range of eigenvalues. The
latter case is particularly interesting for testing Newton-based algorithms.

The matrix Q is defined as

579.7818 −227.6855 49.2126 −60.3045 −152.4101 −207.2424 8.0917 33.6562 204.1312 −3.7129

−227.6855 236.2505 −16.7689 −40.3592 179.8471 80.0880 −64.8326 15.2262 −92.2572 40.7367

49.2126 −16.7689 84.1037 −71.0547 20.4327 5.1911 −58.7067 −36.1088 −62.7296 7.3676

−60.3045 −40.3592 −71.0547 170.3128 −140.0148 8.9436 26.7365 125.8567 62.3607 −21.9523

−152.4101 179.8471 20.4327 −140.0148 301.2494 45.5550 −31.3547 −95.8025 −164.7464 40.1319

−207.2424 80.0880 5.1911 8.9436 45.5550 178.5194 22.9953 −39.6349 −88.1826 −29.1089

8.0917 −64.8326 −58.7067 26.7365 −31.3547 22.9953 124.4208 −43.5141 75.5865 −32.2344

33.6562 15.2262 −36.1088 125.8567 −95.8025 −39.6349 −43.5141 261.7592 86.8136 22.9873

204.1312 −92.2572 −62.7296 62.3607 −164.7464 −88.1826 75.5865 86.8136 265.3525 −1.6500

−3.7129 40.7367 7.3676 −21.9523 40.1319 −29.1089 −32.2344 22.9873 −1.6500 49.2499

and has eigenvalues in the range of 1 to 1000.
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The functions achieve minimum points, x∗, at

Matrix M: I Q

x∗0 −10 −2235.1810

x∗1 −10 −1102.4510

x∗2 −10 790.6100

x∗3 −10 −605.2480

x∗4 −10 −28.8760

x∗5 −10 228.7640

x∗6 −10 −271.8830

x∗7 −10 −3312.3890

x∗8 −10 −2846.7870

x∗9 −10 −718.1490
f(x∗) −500 0

Both test functions have been optimized with the same parameter settings.
The settings for the parameters x0 to x9 are all the same:

Vary{

Parameter{

Name = x0; Min = SMALL;

Ini = 0; Max = BIG;

Step = 1;

}

}
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